Suppr超能文献

用于传染病监测的多语言本体:基本原理、设计与挑战。

A multilingual ontology for infectious disease surveillance: rationale, design and challenges.

作者信息

Collier Nigel, Kawazoe Ai, Jin Lihua, Shigematsu Mika, Dien Dinh, Barrero Roberto A, Takeuchi Koichi, Kawtrakul Asanee

机构信息

1National Institute of Informatics, Tokyo, Japan.

2National Institute of Infectious Diseases, Tokyo, Japan.

出版信息

Lang Resour Eval. 2006;40(3):405. doi: 10.1007/s10579-007-9019-7. Epub 2007 Jun 26.

Abstract

A lack of surveillance system infrastructure in the Asia-Pacific region is seen as hindering the global control of rapidly spreading infectious diseases such as the recent avian H5N1 epidemic. As part of improving surveillance in the region, the BioCaster project aims to develop a system based on text mining for automatically monitoring Internet news and other online sources in several regional languages. At the heart of the system is an application ontology which serves the dual purpose of enabling advanced searches on the mined facts and of allowing the system to make intelligent inferences for assessing the priority of events. However, it became clear early on in the project that existing classification schemes did not have the necessary language coverage or semantic specificity for our needs. In this article we present an overview of our needs and explore in detail the rationale and methods for developing a new conceptual structure and multilingual terminological resource that focusses on priority pathogens and the diseases they cause. The ontology is made freely available as an online database and downloadable OWL file.

摘要

亚太地区缺乏监测系统基础设施,这被视为阻碍对如近期H5N1禽流感疫情等快速传播的传染病进行全球防控的因素。作为改善该地区监测工作的一部分,BioCaster项目旨在开发一个基于文本挖掘的系统,用于自动监测多种地区语言的互联网新闻及其他在线资源。该系统的核心是一个应用本体,它具有双重目的:一是能够对挖掘出的事实进行高级搜索,二是使系统能够进行智能推理以评估事件的优先级。然而,在项目早期就很明显,现有的分类方案在语言覆盖范围或语义特异性方面无法满足我们的需求。在本文中,我们概述了我们的需求,并详细探讨了开发一种新的概念结构和多语言术语资源的基本原理和方法,该资源聚焦于重点病原体及其引发的疾病。该本体作为在线数据库和可下载的OWL文件免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3c2/7087677/441071e1bf7d/10579_2007_9019_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验