Suppr超能文献

利用校准后的船载声学回波探测器估算油浓度和流速。

Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders.

机构信息

Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, Durham, NH 03824, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20240-5. doi: 10.1073/pnas.1108771108. Epub 2011 Dec 13.

Abstract

As part of a larger program aimed at evaluating acoustic techniques for mapping the distribution of subsurface oil and gas associated with the Deepwater Horizon-Macondo oil spill, observations were made on June 24 and 25, 2010 using vessel-mounted calibrated single-beam echo sounders on the National Oceanic and Atmospheric Administration ship Thomas Jefferson. Coincident with visual observations of oil at the sea surface, the 200-kHz echo sounder showed anomalously high-volume scattering strength in the upper 200 m on the western side of the wellhead, more than 100 times higher than the surrounding waters at 1,800-m distance from the wellhead, and weakening with increasing distance out to 5,000 m. Similar high-volume scattering anomalies were not observed at 12 or 38 kHz, although observations of anomalously low-volume scattering strength were made in the deep scattering layer at these frequencies at approximately the same locations. Together with observations of ocean currents, the acoustic observations are consistent with a rising plume of small (< 1-mm radius) oil droplets. Using simplistic but reasonable assumptions about the properties of the oil droplets, an estimate of the flow rate was made that is remarkably consistent with those made at the wellhead by other means. The uncertainty in this acoustically derived estimate is high due to lack of knowledge of the size distribution and rise speed of the oil droplets. If properly constrained, these types of acoustic measurements can be used to rapidly estimate the flow rate of oil reaching the surface over large temporal and spatial scales.

摘要

作为评估与深海地平线-马孔多溢油事件相关的地下石油和天然气分布的声学技术的更大计划的一部分,于 2010 年 6 月 24 日和 25 日,使用美国国家海洋和大气管理局(NOAA)的托马斯·杰斐逊号(Thomas Jefferson)上的船载校准单波束回声测深仪进行了观测。与海面石油的视觉观测同时,200 kHz 回声测深仪在井口西侧的上层 200 m 处显示出异常高的体积散射强度,比井口 1800 m 处周围水域高出 100 多倍,并且随着距离的增加而减弱至 5000 m。在 12 或 38 kHz 处未观察到类似的高体积散射异常,尽管在这些频率下在深散射层中观察到了异常低体积散射强度的观测。结合对海流的观测,声学观测结果与上升的小(<1 毫米半径)油滴羽流一致。使用关于油滴特性的简单但合理的假设,估算了流量,与其他方法在井口处的估算结果非常一致。由于缺乏油滴的大小分布和上升速度的知识,这种声学方法得出的估计值存在很大的不确定性。如果适当约束,这些类型的声学测量可以用于快速估计在大时间和空间尺度上到达海面的石油流量。

相似文献

1
Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20240-5. doi: 10.1073/pnas.1108771108. Epub 2011 Dec 13.
2
Review of flow rate estimates of the Deepwater Horizon oil spill.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20260-7. doi: 10.1073/pnas.1112139108. Epub 2011 Dec 20.
3
Macondo oil in northern Gulf of Mexico waters - Part 1: Assessments and forensic methods for Deepwater Horizon offshore water samples.
Mar Pollut Bull. 2018 Apr;129(1):399-411. doi: 10.1016/j.marpolbul.2018.02.055. Epub 2018 Mar 23.
4
Fallout plume of submerged oil from Deepwater Horizon.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15906-11. doi: 10.1073/pnas.1414873111. Epub 2014 Oct 27.
6
Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities.
Sci Total Environ. 2016 Jul 1;557-558:453-68. doi: 10.1016/j.scitotenv.2016.03.015. Epub 2016 Mar 24.
7
Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20246-53. doi: 10.1073/pnas.1110564109. Epub 2012 Jan 10.
9
Assessing the footprint and volume of oil deposited in deep-sea sediments following the Deepwater Horizon oil spill.
Mar Pollut Bull. 2017 Jan 15;114(1):327-342. doi: 10.1016/j.marpolbul.2016.09.046. Epub 2016 Sep 24.
10
Broadband acoustic scattering from oblate hydrocarbon droplets.
J Acoust Soc Am. 2019 Aug;146(2):1176. doi: 10.1121/1.5121699.

引用本文的文献

2
Fluorescence-estimated oil concentration (F) in the Deepwater Horizon subsea oil plume.
Mar Pollut Bull. 2022 Jul;180:113808. doi: 10.1016/j.marpolbul.2022.113808. Epub 2022 Jun 7.
3
Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence.
Sensors (Basel). 2018 Jun 25;18(7):2033. doi: 10.3390/s18072033.
4
Science in support of the Deepwater Horizon response.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20212-21. doi: 10.1073/pnas.1204729109. Epub 2012 Dec 3.
5
Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20268-73. doi: 10.1073/pnas.1115847109. Epub 2012 Dec 3.
6
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20303-8. doi: 10.1073/pnas.1118029109. Epub 2012 Mar 27.

本文引用的文献

1
Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20268-73. doi: 10.1073/pnas.1115847109. Epub 2012 Dec 3.
2
Acoustic measurement of the Deepwater Horizon Macondo well flow rate.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20235-9. doi: 10.1073/pnas.1100385108. Epub 2011 Sep 8.
3
A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.
Science. 2011 Jan 21;331(6015):312-5. doi: 10.1126/science.1199697. Epub 2011 Jan 6.
4
Magnitude of the 2010 Gulf of Mexico oil leak.
Science. 2010 Oct 29;330(6004):634. doi: 10.1126/science.1195840. Epub 2010 Sep 23.
5
Propane respiration jump-starts microbial response to a deep oil spill.
Science. 2010 Oct 8;330(6001):208-11. doi: 10.1126/science.1196830. Epub 2010 Sep 16.
6
Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon.
Science. 2010 Oct 8;330(6001):201-4. doi: 10.1126/science.1195223. Epub 2010 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验