Suppr超能文献

支持深海地平线应对措施的科学。

Science in support of the Deepwater Horizon response.

机构信息

National Oceanic and Atmospheric Administration, Department of Commerce, Washington, DC 20230, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20212-21. doi: 10.1073/pnas.1204729109. Epub 2012 Dec 3.

Abstract

This introduction to the Special Feature presents the context for science during the Deepwater Horizon oil spill response, summarizes how scientific knowledge was integrated across disciplines and statutory responsibilities, identifies areas where scientific information was accurate and where it was not, and considers lessons learned and recommendations for future research and response. Scientific information was integrated within and across federal and state agencies, with input from nongovernmental scientists, across a diverse portfolio of needs--stopping the flow of oil, estimating the amount of oil, capturing and recovering the oil, tracking and forecasting surface oil, protecting coastal and oceanic wildlife and habitat, managing fisheries, and protecting the safety of seafood. Disciplines involved included atmospheric, oceanographic, biogeochemical, ecological, health, biological, and chemical sciences, physics, geology, and mechanical and chemical engineering. Platforms ranged from satellites and planes to ships, buoys, gliders, and remotely operated vehicles to laboratories and computer simulations. The unprecedented response effort depended directly on intense and extensive scientific and engineering data, information, and advice. Many valuable lessons were learned that should be applied to future events.

摘要

本特刊介绍了在深水地平线石油泄漏应对期间的科学背景,总结了如何跨学科和法定职责整合科学知识,确定了科学信息准确和不准确的领域,并考虑了经验教训以及对未来研究和应对的建议。科学信息在联邦和州机构内部以及跨机构进行了整合,并得到了非政府科学家的投入,涉及到多样化的需求组合——阻止石油流动、估计石油数量、捕获和回收石油、跟踪和预测表面石油、保护沿海和海洋野生动物和栖息地、管理渔业以及保护海鲜安全。涉及的学科包括大气科学、海洋学、生物地球化学、生态学、健康科学、生物科学、化学科学、物理学、地质学以及机械和化学工程学。平台范围从卫星和飞机到船只、浮标、滑翔机和遥控潜水器,再到实验室和计算机模拟。前所未有的应对工作直接依赖于密集和广泛的科学和工程数据、信息和建议。吸取了许多宝贵的经验教训,应将其应用于未来的事件。

相似文献

1
Science in support of the Deepwater Horizon response.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20212-21. doi: 10.1073/pnas.1204729109. Epub 2012 Dec 3.
3
A review of seafood safety after the deepwater horizon blowout.
Environ Health Perspect. 2011 Aug;119(8):1062-9. doi: 10.1289/ehp.1103507. Epub 2011 May 12.
6
Review of flow rate estimates of the Deepwater Horizon oil spill.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20260-7. doi: 10.1073/pnas.1112139108. Epub 2011 Dec 20.
7
Improving the Integration of Restoration and Conservation in Marine and Coastal Ecosystems: Lessons from the Disaster.
Bioscience. 2019 Nov 1;69(11):920-927. doi: 10.1093/biosci/biz103. Epub 2019 Sep 18.
9
Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.
Appl Environ Microbiol. 2017 Sep 29;83(20). doi: 10.1128/AEM.00784-17. Print 2017 Oct 15.
10
Federal seafood safety response to the Deepwater Horizon oil spill.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20274-9. doi: 10.1073/pnas.1108886109. Epub 2012 Feb 6.

引用本文的文献

1
Impacts of dispersants on microbial communities and ecological systems.
Appl Microbiol Biotechnol. 2023 Feb;107(4):1095-1106. doi: 10.1007/s00253-022-12332-z. Epub 2023 Jan 17.
2
Absorptive capacity facilitates adaptation to novel environmental disasters.
PLoS One. 2021 Nov 17;16(11):e0259368. doi: 10.1371/journal.pone.0259368. eCollection 2021.
3
A First Comprehensive Baseline of Hydrocarbon Pollution in Gulf of Mexico Fishes.
Sci Rep. 2020 Apr 15;10(1):6437. doi: 10.1038/s41598-020-62944-6.
7
Natural and unnatural oil slicks in the Gulf of Mexico.
J Geophys Res Oceans. 2015 Dec;120(12):8364-8380. doi: 10.1002/2015JC011062. Epub 2015 Dec 28.
8
Corexit-EC9527A Disrupts Retinol Signaling and Neuronal Differentiation in P19 Embryonal Pluripotent Cells.
PLoS One. 2016 Sep 29;11(9):e0163724. doi: 10.1371/journal.pone.0163724. eCollection 2016.
9
Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill.
Microorganisms. 2016 Jul 27;4(3):24. doi: 10.3390/microorganisms4030024.

本文引用的文献

1
Applications of science and engineering to quantify and control the Deepwater Horizon oil spill.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20222-8. doi: 10.1073/pnas.1214389109. Epub 2012 Dec 3.
2
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20303-8. doi: 10.1073/pnas.1118029109. Epub 2012 Mar 27.
3
Federal seafood safety response to the Deepwater Horizon oil spill.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20274-9. doi: 10.1073/pnas.1108886109. Epub 2012 Feb 6.
4
Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20286-91. doi: 10.1073/pnas.1108820109. Epub 2012 Jan 10.
5
Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20246-53. doi: 10.1073/pnas.1110564109. Epub 2012 Jan 10.
6
Review of flow rate estimates of the Deepwater Horizon oil spill.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20260-7. doi: 10.1073/pnas.1112139108. Epub 2011 Dec 20.
7
Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20240-5. doi: 10.1073/pnas.1108771108. Epub 2011 Dec 13.
8
Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20292-7. doi: 10.1073/pnas.1108756108. Epub 2011 Oct 3.
9
Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20298-302. doi: 10.1073/pnas.1109545108. Epub 2011 Sep 26.
10
Acoustic measurement of the Deepwater Horizon Macondo well flow rate.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20235-9. doi: 10.1073/pnas.1100385108. Epub 2011 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验