Suppr超能文献

协同应用仿生灌注和电刺激可改善工程化心脏组织的组装。

Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.

出版信息

J Tissue Eng Regen Med. 2012 Nov;6(10):e12-23. doi: 10.1002/term.525. Epub 2011 Dec 13.

Abstract

Maintenance of normal myocardial function depends intimately on synchronous tissue contraction, driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue but, due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation and unconstrained (i.e. not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate these three key factors in concert. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modelling studies. We then cultured cardiac cells obtained from neonatal rats in porous, channelled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After 8 days of culture, constructs grown with simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23 ± 0.10% vs 0.14 ± 0.05%, 0.13 ± 0.08% or 0.09 ± 0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization compared to control groups. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs.

摘要

维持正常心肌功能取决于电激活驱动的同步组织收缩,以及支持其的充足营养灌注。生物反应器已被用于体外模拟这些因素的某些方面,以构建心肌组织,但由于设计限制,以前的生物反应器系统尚未同时支持营养灌注、电刺激和无约束(即非等长)的组织收缩。据我们所知,本文所述的生物反应器系统是第一个协同整合这三个关键因素的系统。我们介绍了我们的生物反应器设计,并在综合实验和数学建模研究中对其功能进行了描述。然后,我们在多孔通道弹性体支架中培养了来自新生大鼠的心脏细胞,同时施加灌注和电刺激,对照实验则排除了这两种条件中的一种或两种。在 8 天的培养后,同时进行灌注和电刺激的构建体表现出显著改善的功能特性,这表现在收缩幅度显著增加(0.23 ± 0.10%与 0.14 ± 0.05%、0.13 ± 0.08%或 0.09 ± 0.02%,分别为对照构建体在无刺激、无灌注或无刺激或无灌注条件下的生长)。一致地,与对照组相比,这些构建体具有显著改善的 DNA 含量、支架厚度内的细胞分布、心脏蛋白表达、细胞形态和整体组织结构。因此,使用新型生物反应器系统同时施加培养基灌注和电调节可以加速具有完全功能的、临床尺寸的心脏组织构建体的生成。

相似文献

1
Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.
J Tissue Eng Regen Med. 2012 Nov;6(10):e12-23. doi: 10.1002/term.525. Epub 2011 Dec 13.
3
Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.
Tissue Eng Part C Methods. 2010 Dec;16(6):1417-26. doi: 10.1089/ten.TEC.2010.0068. Epub 2010 May 10.
4
Pulsatile perfusion bioreactor for cardiac tissue engineering.
Biotechnol Prog. 2008 Jul-Aug;24(4):907-20. doi: 10.1002/btpr.11.
5
Optical mapping of impulse propagation in engineered cardiac tissue.
Tissue Eng Part A. 2009 Apr;15(4):851-60. doi: 10.1089/ten.tea.2008.0223.
7
Engineering of functional contractile cardiac tissues cultured in a perfusion system.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3590-3. doi: 10.1109/IEMBS.2008.4649982.
8
Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6219-23. doi: 10.1109/EMBC.2013.6610974.
9
Channelled scaffolds for engineering myocardium with mechanical stimulation.
J Tissue Eng Regen Med. 2012 Oct;6(9):748-56. doi: 10.1002/term.481. Epub 2011 Nov 14.
10
Bioreactor Design for Culturing Vascularized Engineered Tissue in Flow Conditions.
Tissue Eng Part A. 2024 Jun;30(11-12):304-313. doi: 10.1089/ten.TEA.2023.0201. Epub 2023 Nov 29.

引用本文的文献

2
Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia.
J Nanobiotechnology. 2024 Aug 30;22(1):523. doi: 10.1186/s12951-024-02805-w.
3
Two Decades of Advances and Limitations in Organ Recellularization.
Curr Issues Mol Biol. 2024 Aug 22;46(8):9179-9214. doi: 10.3390/cimb46080543.
4
Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering.
Bioprocess Biosyst Eng. 2024 Jun;47(6):767-839. doi: 10.1007/s00449-024-03004-5. Epub 2024 Apr 20.
5
Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches.
Adv Healthc Mater. 2024 May;13(13):e2303288. doi: 10.1002/adhm.202303288. Epub 2024 Feb 20.
8
Versatile electrical stimulator for cardiac tissue engineering-Investigation of charge-balanced monophasic and biphasic electrical stimulations.
Front Bioeng Biotechnol. 2023 Jan 4;10:1031183. doi: 10.3389/fbioe.2022.1031183. eCollection 2022.
9
A Conductive Bioengineered Cardiac Patch for Myocardial Infarction Treatment by Improving Tissue Electrical Integrity.
Adv Healthc Mater. 2023 Jan;12(1):e2201856. doi: 10.1002/adhm.202201856. Epub 2022 Oct 17.
10
Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium to aid non-arrhythmic engineered heart tissue design.
PLoS Comput Biol. 2022 Apr 1;18(4):e1010030. doi: 10.1371/journal.pcbi.1010030. eCollection 2022 Apr.

本文引用的文献

1
A fast normalized cross-correlation calculation method for motion estimation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1347-57. doi: 10.1109/TUFFC.2010.1554.
2
Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.
Tissue Eng Part C Methods. 2010 Dec;16(6):1417-26. doi: 10.1089/ten.TEC.2010.0068. Epub 2010 May 10.
4
Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6517-21. doi: 10.1109/IEMBS.2009.5333142.
5
Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors.
FASEB J. 2010 Mar;24(3):700-11. doi: 10.1096/fj.09-139477. Epub 2009 Oct 22.
6
Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3329-34. doi: 10.1073/pnas.0905729106. Epub 2009 Oct 21.
7
Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species.
Exp Cell Res. 2009 Dec 10;315(20):3611-9. doi: 10.1016/j.yexcr.2009.08.015. Epub 2009 Aug 29.
8
Challenges in cardiac tissue engineering.
Tissue Eng Part B Rev. 2010 Apr;16(2):169-87. doi: 10.1089/ten.TEB.2009.0352.
9
A biocompatible endothelial cell delivery system for in vitro tissue engineering.
Cell Transplant. 2009;18(7):731-43. doi: 10.3727/096368909X470919. Epub 2009 Apr 9.
10
Cardiac tissue engineering using stem cells.
IEEE Eng Med Biol Mag. 2009 Mar-Apr;28(2):80, 82, 84-6, 88-9. doi: 10.1109/memb.2009.931792.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验