Suppr超能文献

上丘视动感受野在非束缚性头部凝视转移过程中的固有参照系。

Intrinsic reference frames of superior colliculus visuomotor receptive fields during head-unrestrained gaze shifts.

机构信息

Department of Psychology, York Centre for Vision Research, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.

出版信息

J Neurosci. 2011 Dec 14;31(50):18313-26. doi: 10.1523/JNEUROSCI.0990-11.2011.

Abstract

A sensorimotor neuron's receptive field and its frame of reference are easily conflated within the natural variability of spatial behavior. Here, we capitalized on such natural variations in 3-D eye and head positions during head-unrestrained gaze shifts to visual targets in two monkeys: to determine whether intermediate/deep layer superior colliculus (SC) receptive fields code visual targets or gaze kinematics, within four different frames of reference. Visuomotor receptive fields were either characterized during gaze shifts to visual targets from a central fixation position (32 U) or were partially characterized from each of three initial fixation points (31 U). Natural variations of initial 3-D gaze and head orientation (including torsion) provided spatial separation between four different coordinate frame models (space, head, eye, fixed-vector relative to fixation), whereas natural saccade errors provided spatial separation between target and gaze positions. Using a new statistical method based on predictive sum-of-squares, we found that in our population of 63 neurons (1) receptive field fits to target positions were significantly better than fits to actual gaze shift locations and (2) eye-centered models gave significantly better fits than the head or space frame. An intermediate frames analysis confirmed that individual neuron fits were distributed target-in-eye coordinates. Gaze position "gain" effects with the spatial tuning required for a 3-D reference frame transformation were significant in 23% (7/31) of neurons tested. We conclude that the SC primarily represents gaze targets relative to the eye but also carries early signatures of the 3-D sensorimotor transformation.

摘要

感觉运动神经元的感受野及其参照系很容易在空间行为的自然变异性中混淆。在这里,我们利用了两只猴子在不受头部约束的注视转移过程中 3-D 眼睛和头部位置的自然变化,来确定中深层上丘(SC)感受野是编码视觉目标还是注视运动学,以及在四个不同参照系内。视觉运动感受野是在从中央注视位置(32 U)注视目标的注视转移过程中进行特征描述的,或者是从三个初始注视点(31 U)中的每一个进行部分特征描述的。初始 3-D 注视和头部方向(包括扭转)的自然变化为四个不同的坐标框架模型(空间、头部、眼睛、相对于注视的固定向量)提供了空间分离,而自然扫视误差为目标和注视位置提供了空间分离。使用基于预测平方和的新统计方法,我们发现,在我们的 63 个神经元群体中:(1)感受野对目标位置的拟合明显优于对实际注视转移位置的拟合;(2)以眼睛为中心的模型比头部或空间框架的拟合更好。中间框架分析证实,个体神经元的拟合分布在眼睛中的目标坐标。在测试的 7/31(23%)个神经元中,与 3-D 参考框架转换所需的空间调谐相关的注视位置“增益”效应显著。我们得出结论,SC 主要相对于眼睛来表示注视目标,但也携带了 3-D 感觉运动转换的早期特征。

相似文献

1
Intrinsic reference frames of superior colliculus visuomotor receptive fields during head-unrestrained gaze shifts.
J Neurosci. 2011 Dec 14;31(50):18313-26. doi: 10.1523/JNEUROSCI.0990-11.2011.
5
Frames of reference for eye-head gaze shifts evoked during frontal eye field stimulation.
Eur J Neurosci. 2013 Jun;37(11):1754-65. doi: 10.1111/ejn.12175. Epub 2013 Mar 13.
6
Compensating for a shifting world: evolving reference frames of visual and auditory signals across three multimodal brain areas.
J Neurophysiol. 2021 Jul 1;126(1):82-94. doi: 10.1152/jn.00385.2020. Epub 2021 Apr 14.
7
8
Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.
Cereb Cortex. 2015 Oct;25(10):3932-52. doi: 10.1093/cercor/bhu279. Epub 2014 Dec 9.
9
A method for mapping response fields and determining intrinsic reference frames of single-unit activity: applied to 3D head-unrestrained gaze shifts.
J Neurosci Methods. 2009 May 30;180(1):171-84. doi: 10.1016/j.jneumeth.2009.03.004. Epub 2009 Mar 21.
10
Maps and sensorimotor transformations for eye-head gaze shifts: Role of the midbrain superior colliculus.
Prog Brain Res. 2019;249:19-33. doi: 10.1016/bs.pbr.2019.01.006. Epub 2019 Feb 25.

引用本文的文献

2
Integration of landmark and saccade target signals in macaque frontal cortex visual responses.
Commun Biol. 2023 Sep 13;6(1):938. doi: 10.1038/s42003-023-05291-2.
3
Compensating for a shifting world: evolving reference frames of visual and auditory signals across three multimodal brain areas.
J Neurophysiol. 2021 Jul 1;126(1):82-94. doi: 10.1152/jn.00385.2020. Epub 2021 Apr 14.
4
5
Spatiotemporal transformations for gaze control.
Physiol Rep. 2020 Aug;8(16):e14533. doi: 10.14814/phy2.14533.
6
Timing Determines Tuning: A Rapid Spatial Transformation in Superior Colliculus Neurons during Reactive Gaze Shifts.
eNeuro. 2020 Jan 3;7(1). doi: 10.1523/ENEURO.0359-18.2019. Print 2020 Jan/Feb.
8
The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor?
Front Neural Circuits. 2018 Oct 22;12:74. doi: 10.3389/fncir.2018.00074. eCollection 2018.
9
Three-Dimensional Representation of Motor Space in the Mouse Superior Colliculus.
Curr Biol. 2018 Jun 4;28(11):1744-1755.e12. doi: 10.1016/j.cub.2018.04.021. Epub 2018 May 17.
10
Role of Rostral Fastigial Neurons in Encoding a Body-Centered Representation of Translation in Three Dimensions.
J Neurosci. 2018 Apr 4;38(14):3584-3602. doi: 10.1523/JNEUROSCI.2116-17.2018. Epub 2018 Feb 27.

本文引用的文献

1
The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex.
J Neurophysiol. 2011 Jul;106(1):71-7. doi: 10.1152/jn.00668.2010. Epub 2011 Feb 23.
2
Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments.
Nat Neurosci. 2010 Feb;13(2):261-6. doi: 10.1038/nn.2470. Epub 2009 Dec 20.
3
Representation of Horizontal head-on-body position in the primate superior colliculus.
J Neurophysiol. 2010 Feb;103(2):858-74. doi: 10.1152/jn.00099.2009. Epub 2009 Dec 9.
4
3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex.
Neuroscience. 2009 Dec 15;164(3):1284-302. doi: 10.1016/j.neuroscience.2009.08.066. Epub 2009 Sep 4.
6
A method for mapping response fields and determining intrinsic reference frames of single-unit activity: applied to 3D head-unrestrained gaze shifts.
J Neurosci Methods. 2009 May 30;180(1):171-84. doi: 10.1016/j.jneumeth.2009.03.004. Epub 2009 Mar 21.
8
Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered reference frame.
Cereb Cortex. 2009 Aug;19(8):1761-75. doi: 10.1093/cercor/bhn207. Epub 2008 Dec 9.
9
Perceptual learning and sensomotor flexibility: cortical plasticity under attentional control?
Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):313-9. doi: 10.1098/rstb.2008.0267.
10
Decoding the cortical transformations for visually guided reaching in 3D space.
Cereb Cortex. 2009 Jun;19(6):1372-93. doi: 10.1093/cercor/bhn177. Epub 2008 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验