Mahoney-Keck Center for Brain and Behavior Research, Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York, New York, USA.
J Neurophysiol. 2011 Jul;106(1):71-7. doi: 10.1152/jn.00668.2010. Epub 2011 Feb 23.
A proprioceptive representation of eye position exists in area 3a of primate somatosensory cortex (Wang X, Zhang M, Cohen IS, Goldberg ME. Nat Neurosci 10: 640-646, 2007). This eye position signal is consistent with a fusimotor response (Taylor A, Durbaba R, Ellaway PH, Rawlinson S. J Physiol 571: 711-723, 2006) and has two components during a visually guided saccade task: a short-latency phasic response followed by a tonic response. While the early phasic response can be excitatory or inhibitory, it does not accurately reflect the eye's orbital position. The late tonic response appears to carry the proprioceptive eye position signal, but it is not clear when this component emerges and whether the onset of this signal is reliable. To test the temporal dynamics of the tonic proprioceptive signal, we used an oculomotor smooth pursuit task in which saccadic eye movements and phasic proprioceptive responses are suppressed. Our results show that the tonic proprioceptive eye position signal consistently lags the actual eye position in the orbit by ~60 ms under a variety of eye movement conditions. To confirm the proprioceptive nature of this signal, we also studied the responses of neurons in a vestibuloocular reflex (VOR) task in which the direction of gaze was held constant; response profiles and delay times were similar in this task, suggesting that this signal does not represent angle of gaze and does not receive visual or vestibular inputs. The length of the delay suggests that the proprioceptive eye position signal is unlikely to be used for online visual processing for action, although it could be used to calibrate an efference copy signal.
在灵长类动物体感皮层 3a 区存在眼球位置的本体感受representation(Wang X, Zhang M, Cohen IS, Goldberg ME. Nat Neurosci 10: 640-646, 2007)。这个眼球位置信号与fusimotor response(Taylor A, Durbaba R, Ellaway PH, Rawlinson S. J Physiol 571: 711-723, 2006)一致,并且在视觉引导的扫视任务中有两个component:一个短潜伏期的phasic response,随后是一个tonic response。虽然早期的 phasic response 可以是兴奋性的或抑制性的,但它并不能准确反映眼球的轨道位置。晚期的 tonic response 似乎携带本体感受的眼球位置信号,但不清楚这个component何时出现,以及这个信号的开始是否可靠。为了测试 tonic 本体感受信号的时间动态,我们使用了一个眼球追踪smooth pursuit 任务,在这个任务中,扫视眼动和phasic 本体感受反应被抑制。我们的结果表明,在各种眼球运动条件下,tonic 本体感受眼球位置信号始终滞后于轨道中的实际眼球位置约 60ms。为了确认这个信号的本体感受nature,我们还研究了前庭眼反射(VOR)任务中神经元的反应,在这个任务中,凝视方向保持不变;在这个任务中,反应profile 和延迟时间相似,这表明这个信号不代表凝视角度,也不接收视觉或前庭输入。延迟的长度表明,本体感受眼球位置信号不太可能用于在线视觉处理,尽管它可以用于校准传出副本信号。