EA 4244, Physicochimie des matériaux et des biomolécules, équipe Nanovecteurs magnétiques pour la chimiothérapie, Université F. Rabelais, Faculté de Pharmacie, 31 avenue Monge, F-37200 Tours, France.
Langmuir. 2012 Jan 17;28(2):1496-505. doi: 10.1021/la2037845. Epub 2011 Dec 29.
We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect). Nevertheless, for these concepts to work together, the choice of ingredients and particle structure are critically important. Therefore, in the present work, a detailed physicochemical characterization of the organic coating of the hybrid nanoparticles is performed by several surface-specific instrumental methods, including surface-enhanced Raman scattering (SERS) spectroscopy, X-ray photoelectron spectrometry (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We demonstrate that the anticancer drug doxorubicin is attached to the iron oxide surface and buried under the polymer layers, while folic acid is located on the extreme surface of the organic coating. Interestingly, the moderate presence of folic acid on the particle surface does not increase the particle surface potential, while it is sufficient to increase the particle uptake by MCF-7 cancer cells. All of these original results contribute to the better understanding of the structure-activity relationship for hybrid biocompatible nanosystems and are encouraging for the applications in cancer theranostics.
我们报告了新型生物相容纳米系统的高效一步合成及详细的物理化学评价,这些纳米系统可用于癌症治疗和诊断(治疗学)。这些系统是超顺磁性氧化铁纳米颗粒(SPION),负载阿霉素(DOX)抗癌药物,并涂覆有共价键合的生物相容聚合物聚乙二醇(PEG),天然和修饰的生物癌症靶向配体叶酸(FA)。这些多功能纳米颗粒(SPION-DOX-PEG-FA)旨在合理结合癌细胞靶向的多层次机制(磁性和生物)、双模式癌细胞成像(通过 MRI 和荧光)和双模式癌症治疗(通过靶向药物传递和热疗效应)。然而,为了使这些概念共同发挥作用,成分和颗粒结构的选择至关重要。因此,在目前的工作中,通过几种表面特定的仪器方法,包括表面增强拉曼散射(SERS)光谱、X 射线光电子能谱(XPS)和飞行时间二次离子质谱(ToF-SIMS),对杂化纳米颗粒的有机涂层进行了详细的物理化学表征。我们证明,阿霉素抗癌药物附着在氧化铁表面上,并埋在聚合物层下,而叶酸位于有机涂层的最外表面。有趣的是,颗粒表面存在适量的叶酸不会增加颗粒表面电位,但足以增加 MCF-7 癌细胞对颗粒的摄取。所有这些原始结果都有助于更好地理解杂交生物相容纳米系统的结构-活性关系,并为癌症治疗学的应用提供了鼓舞。
Bioconjug Chem. 2014-7-16
Eur J Pharm Sci. 2009-8-12
ACS Appl Mater Interfaces. 2010-7
Biochim Biophys Acta Gen Subj. 2016-12-2
Photochem Photobiol. 2025-4-15
Cancer Biol Med. 2021-4-16
Nan Fang Yi Ke Da Xue Xue Bao. 2019-8-30
Sci Technol Adv Mater. 2015-4-28
Int J Nanomedicine. 2016-6-13