文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性氧化铁纳米颗粒的最新进展:合成、表面功能策略及生物医学应用

Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

作者信息

Wu Wei, Wu Zhaohui, Yu Taekyung, Jiang Changzhong, Kim Woo-Sik

机构信息

Department of Chemical Engineering, Kyung Hee University, Korea.

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.

出版信息

Sci Technol Adv Mater. 2015 Apr 28;16(2):023501. doi: 10.1088/1468-6996/16/2/023501. eCollection 2015 Apr.


DOI:10.1088/1468-6996/16/2/023501
PMID:27877761
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5036481/
Abstract

This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical or applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed.

摘要

本综述聚焦于裸露的和表面功能化的氧化铁纳米颗粒(IONPs)在制备、微观结构和磁性能方面的最新进展及各种策略;还讨论了它们相应的生物学应用。为了实现实际应用,IONPs必须具备高磁饱和度、稳定性、生物相容性以及表面交互功能等综合特性。此外,IONPs的表面可以通过有机材料或无机材料进行修饰,如聚合物、生物分子、二氧化硅、金属等。文中考虑了IONPs合成、表面功能化和生物应用的新功能化策略、问题及主要挑战,以及当前的发展方向。最后,还讨论了这些研究领域的一些未来趋势和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/3bf20df2459b/TSTA1166125626.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/94dff0e2f9d9/TSTA1166125601.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/f9a15b2d080f/TSTA1166125602.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/84798893c431/TSTA1166125603.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/c2fdaf34807c/TSTA1166125604.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/50802f89eb98/TSTA1166125605.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/9d2aa9360cb7/TSTA1166125606.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/86bf91d5d0a7/TSTA1166125607.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/994911d11b13/TSTA1166125608.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/996e5caf954b/TSTA1166125609.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/25aa52602c50/TSTA1166125610.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/6594c9db59fd/TSTA1166125611.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/06b67abe984a/TSTA1166125612.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/023061c297fc/TSTA1166125613.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/253cc2834def/TSTA1166125614.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/ffe200b79359/TSTA1166125615.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/02f715e7bca1/TSTA1166125616.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/1ecd8288483e/TSTA1166125617.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/5ad9d80eb037/TSTA1166125618.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/ec95e20f65a0/TSTA1166125619.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/ddc0e15bc023/TSTA1166125620.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/fd496b76896b/TSTA1166125621.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/721bfe230dcc/TSTA1166125622.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/9fcc75327b77/TSTA1166125623.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/3b22affda576/TSTA1166125624.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/40a0cf07810c/TSTA1166125625.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/3bf20df2459b/TSTA1166125626.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/94dff0e2f9d9/TSTA1166125601.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/f9a15b2d080f/TSTA1166125602.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/84798893c431/TSTA1166125603.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/c2fdaf34807c/TSTA1166125604.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/50802f89eb98/TSTA1166125605.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/9d2aa9360cb7/TSTA1166125606.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/86bf91d5d0a7/TSTA1166125607.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/994911d11b13/TSTA1166125608.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/996e5caf954b/TSTA1166125609.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/25aa52602c50/TSTA1166125610.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/6594c9db59fd/TSTA1166125611.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/06b67abe984a/TSTA1166125612.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/023061c297fc/TSTA1166125613.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/253cc2834def/TSTA1166125614.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/ffe200b79359/TSTA1166125615.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/02f715e7bca1/TSTA1166125616.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/1ecd8288483e/TSTA1166125617.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/5ad9d80eb037/TSTA1166125618.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/ec95e20f65a0/TSTA1166125619.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/ddc0e15bc023/TSTA1166125620.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/fd496b76896b/TSTA1166125621.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/721bfe230dcc/TSTA1166125622.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/9fcc75327b77/TSTA1166125623.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/3b22affda576/TSTA1166125624.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/40a0cf07810c/TSTA1166125625.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/5036481/3bf20df2459b/TSTA1166125626.jpg

相似文献

[1]
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

Sci Technol Adv Mater. 2015-4-28

[2]
Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies.

Nanoscale Res Lett. 2008-10-2

[3]
Surface Modification of Magnetic Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2018-10-9

[4]
Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications.

Nanoscale. 2020-7-23

[5]
Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review.

Materials (Basel). 2022-1-10

[6]
Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.

3 Biotech. 2018-6

[7]
Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future.

Materials (Basel). 2020-10-18

[8]
Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.

Theranostics. 2018-5-11

[9]
Recent trends in preparation and biomedical applications of iron oxide nanoparticles.

J Nanobiotechnology. 2024-1-8

[10]
Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review.

Artif Organs. 2021-11

引用本文的文献

[1]
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification.

Polymers (Basel). 2025-7-31

[2]
Magnetically Retrievable Nanoparticles with Tailored Surface Ligands for Investigating the Interaction and Removal of Water-Soluble PFASs in Natural Water Matrices.

Sensors (Basel). 2025-7-11

[3]
Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors.

Pharmaceutics. 2025-4-9

[4]
Antibacterial potential of silver-selenium nanocomposites in mitigating fire blight disease in L.

Front Plant Sci. 2025-3-12

[5]
Fabrication of 3D Biofunctional Magnetic Scaffolds by Combining Fused Deposition Modelling and Inkjet Printing of Superparamagnetic Iron Oxide Nanoparticles.

Tissue Eng Regen Med. 2025-3-18

[6]
Lignin-Based Nanocarrier for Simultaneous Delivery of I and SN-38 in the Combined Treatment of Solid Tumors by a Nanobrachytherapy Approach.

Pharmaceuticals (Basel). 2025-1-27

[7]
Protein Corona of Nanoparticles: Isolation and Analysis.

Chem Bio Eng. 2024-10-3

[8]
Structure and Dynamics of the Magnetite(001)/Water Interface from Molecular Dynamics Simulations Based on a Neural Network Potential.

J Chem Theory Comput. 2025-2-25

[9]
Anxiety of microbially synthesized FeO-SPIONs on embryonic/larval ontogeny in red tilapia (Oreochromis sp.).

Appl Microbiol Biotechnol. 2025-1-7

[10]
An AI-directed analytical study on the optical transmission microscopic images of Pseudomonas aeruginosa in planktonic and biofilm states.

ArXiv. 2024-12-24

本文引用的文献

[1]
Retraction: Magnetic FeO@NiO hierarchical structures: preparation and their excellent As(v) and Cr(vi) removal capabilities.

RSC Adv. 2021-9-15

[2]
Highly water-soluble magnetic iron oxide (FeO) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates.

J Mater Chem B. 2013-6-14

[3]
Folate-conjugated FeO@SiO@gold nanorods@mesoporous SiO hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy.

J Mater Chem B. 2013-6-21

[4]
Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications.

J Mater Chem B. 2013-3-14

[5]
Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia.

J Magn Magn Mater. 2009-7

[6]
Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts.

Nanoscale. 2015-1-7

[7]
Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and Tumor Imaging.

J Biomed Nanotechnol. 2008-12-1

[8]
Application of electrochemical biosensors in clinical diagnosis.

J Clin Lab Anal. 2012-1

[9]
Development of Fe/Fe3O4 core-shell nanocubes as a promising magnetic resonance imaging contrast agent.

Langmuir. 2013-10-10

[10]
Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking.

Theranostics. 2013-7-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索