Department of Bioengineering, University of Texas at Arlington, TX, United States.
Int J Pharm. 2012 Feb 28;423(2):516-24. doi: 10.1016/j.ijpharm.2011.11.043. Epub 2011 Dec 6.
This research aims to develop targeted nanoparticles as drug carriers to the injured arterial wall under fluid shear stress by mimicking the natural binding ability of platelets via interactions of glycoprotein Ib-alpha (GPIbα) of platelets with P-selectin of damaged endothelial cells (ECs) and/or with von Willebrand factor (vWF) of the subendothelium. Drug-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles were formulated using a standard emulsion method and conjugated with glycocalicin, the external fraction of platelet GPIbα, via carbodiimide chemistry. Surface-coated and cellular uptake studies in ECs showed that conjugation of PLGA nanoparticles, with GPIb, significantly increased nanoparticle adhesion to P-selectin- and vWF-coated surfaces as well as nanoparticle uptake by activated ECs under fluid shear stresses. In addition, effects of nanoparticle size and shear stress on adhesion efficiency were characterized through parallel flow chamber studies. The observed decrease in bound nanoparticle density with increased particle sizes and shear stresses is also explained through a computational model. Our results demonstrate that the GPIb-conjugated PLGA nanoparticles can be used as a targeted and controlled drug delivery system under flow conditions at the site of vascular injury.
本研究旨在通过模拟血小板通过与损伤的内皮细胞(EC)的血小板糖蛋白 Ib-α(GPIbα)与血管性血友病因子(vWF)的相互作用与 subendothelium 天然结合能力,开发靶向纳米颗粒作为药物载体递送至受流体力剪切应力作用的受损动脉壁。使用标准的乳液方法将载药的聚(D,L-丙交酯-共-乙交酯)(PLGA)纳米颗粒进行配方,并通过碳二亚胺化学将血小板 GPIbα 的外部分糖钙蛋白与纳米颗粒偶联。在 ECs 中进行的表面涂层和细胞摄取研究表明,PLGA 纳米颗粒与 GPIb 的偶联显著增加了纳米颗粒与 P-选择素和 vWF 涂层表面的粘附以及在流体剪切应力下激活的 ECs 中纳米颗粒的摄取。此外,还通过平行流室研究对纳米颗粒尺寸和剪切应力对粘附效率的影响进行了表征。通过计算模型解释了随着颗粒尺寸和剪切应力的增加,结合的纳米颗粒密度的降低。我们的研究结果表明,GPIb 偶联的 PLGA 纳米颗粒可作为在血管损伤部位的流动条件下的靶向和控制药物传递系统。