Department of Chemical Engineering, University of Virginia, Charlottesville, USA.
J Appl Physiol (1985). 2012 Mar;112(5):859-67. doi: 10.1152/japplphysiol.01152.2011. Epub 2011 Dec 15.
In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Schäfer and coworkers (Schäfer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239-240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a <0.1% chance of occurring from random numbers were classified as exhibiting interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge.
在健康的新生儿中,通过脑干化学感觉途径和自主神经系统将心脏和肺部连接起来,导致心肺同步。由于重症监护环境中信号质量间歇性和心率和呼吸率的可变性,这种心脏和呼吸动力学之间的相互依存关系很难测量。我们采用了 Schäfer 及其同事提出的基于相位的测量方法(Schäfer C、Rosenblum MG、Kurths J、Abel HH。自然 392:239-240,1998),对心肺相互作用进行了逐次呼吸的分析。这种心肺相互作用的测量方法无法区分与心血耦联相关的呼吸控制和与呼吸窦性心律失常相关的呼吸对心率的影响。我们在 4 分钟的滑动窗口中计算了心跳的概率密度作为呼吸周期的并发相位的函数。将 Shannon 熵的概率密度函数的概率小于 0.1% 的随机数分类为表现出相互作用。通过这种方式,我们分析了弗吉尼亚大学新生儿重症监护病房 1202 名患者的 18 年婴儿数据。我们在 3.3 年的数据中发现了相互作用的证据(18%)。心肺相互作用随着产后发育而增加了几倍,但令人惊讶的是,出生时的胎龄对其增加速度没有影响。我们发现这种心肺相互作用的测量与心血耦联之间存在中等程度的对应关系,而没有呼吸窦性心律失常的证据,这需要进一步研究其潜在机制。这种连续的生理相互作用测量可能有助于评估新生儿重症监护患者的发育成熟度,并有助于判断疾病初期和出院的决策。