Suppr超能文献

从人类单试颅内 EEG 中解码序列学习。

Decoding sequence learning from single-trial intracranial EEG in humans.

机构信息

Department of Radiology, Vaudois University Hospital Center and University of Lausanne, Lausanne, Switzerland.

出版信息

PLoS One. 2011;6(12):e28630. doi: 10.1371/journal.pone.0028630. Epub 2011 Dec 9.

Abstract

We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

摘要

我们提出并验证了一种用于描述人类颅内脑电图(iEEG)在学习运动序列后变化的多元分类算法。该算法基于隐马尔可夫模型(HMM),可捕获单次试验水平的 iEEG 的时空特性。在两名深度电极植入多个脑区的患者的两次会话(一次在睡眠前,一次在睡眠后)中连续采集了颅内 iEEG。他们使用非优势手的手指执行视觉运动序列(序列反应时间任务,SRTT)。我们的结果表明,解码算法正确地将来自训练序列的单个 iEEG 试验分类为属于初始训练阶段(第 1 天,睡眠前)或后来的巩固阶段(第 2 天,睡眠后),而对于属于对照条件(伪随机序列)的试验则无法分类。通过利用神经活动的分布式模式实现了准确的单次试验分类。然而,在所有接触点中,海马体对两名患者的分类准确性贡献最大,一名患者的额纹状体接触点贡献最大。总之,这些人类颅内发现表明,多元解码方法可以检测到单次 iEEG 水平的学习相关变化。由于它允许在单个受试者水平上对有助于行为效应(或实验条件)的脑区进行无偏识别,因此该方法可用于评估植入多个电极的患者的其他复杂认知功能的神经相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e32/3235148/cfce38b0147f/pone.0028630.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验