Suppr超能文献

一种参与调节亚砷酸盐氧化的周质砷结合蛋白。

A periplasmic arsenite-binding protein involved in regulating arsenite oxidation.

机构信息

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.

出版信息

Environ Microbiol. 2012 Jul;14(7):1624-34. doi: 10.1111/j.1462-2920.2011.02672.x. Epub 2011 Dec 19.

Abstract

Arsenic (As) is the most common toxic element in the environment, ranking first on the Superfund List of Hazardous Substances. Microbial redox transformations are the principal drivers of As chemical speciation, which in turn dictates As mobility and toxicity. Consequently, in order to manage or remediate environmental As, land managers need to understand how and why microorganisms react to As. Studies have demonstrated a two-component signal transduction system comprised of AioS (sensor kinase) and AioR (response regulator) is involved in regulating microbial AsIII oxidation, with the AsIII oxidase structural genes aioB and aioA being upregulated by AsIII. However, it is not known whether AsIII is first detected directly by AioS or by an intermediate. Herein we demonstrate the essential role of a periplasmic AsIII-binding protein encoded by aioX, which is upregulated by AsIII. An ΔaioX mutant is defective for upregulation of the aioBA genes and consequently AsIII oxidation. Purified AioX expressed without its TAT-type signal peptide behaves as a monomer (MW 32 kDa), and Western blots show AioX to be exclusively associated with the cytoplasmic membrane. AioX binds AsIII with a K(D) of 2.4 µM AsIII; however, mutating a conserved Cys108 to either alanine or serine resulted in lack of AsIII binding, lack of aioBA induction, and correlated with a negative AsIII oxidation phenotype. The discovery and characterization of AioX illustrates a novel AsIII sensing mechanism that appears to be used in a range of bacteria and also provides one of the first examples of a bacterial signal anchor protein.

摘要

砷(As)是环境中最常见的有毒元素,在超级基金清单的有害物质中排名第一。微生物的氧化还原转化是砷化学形态的主要驱动因素,而砷的化学形态又决定了砷的迁移性和毒性。因此,为了管理或修复环境中的砷,土地管理者需要了解微生物如何以及为何对砷做出反应。研究表明,由 AioS(传感器激酶)和 AioR(响应调节剂)组成的双组分信号转导系统参与调节微生物的 AsIII 氧化,而 AsIII 氧化酶结构基因 aioB 和 aioA 则被 AsIII 上调。然而,目前尚不清楚 AsIII 是直接被 AioS 还是被中间产物检测到。本文证明了由 aioX 编码的周质 AsIII 结合蛋白的重要作用,该蛋白被 AsIII 上调。一个 ΔaioX 突变体在 aioBA 基因的上调和因此 AsIII 氧化方面存在缺陷。没有 TAT 型信号肽的表达的纯化 AioX 表现为单体(MW 32 kDa),Western blot 显示 AioX 仅与细胞质膜相关。AioX 与 AsIII 的结合 K(D)为 2.4 µM AsIII;然而,将保守的 Cys108 突变为丙氨酸或丝氨酸导致缺乏 AsIII 结合、缺乏 aioBA 诱导,并与负的 AsIII 氧化表型相关。AioX 的发现和表征说明了一种新的 AsIII 感应机制,这种机制似乎在多种细菌中都有使用,同时也提供了第一个细菌信号锚定蛋白的例子之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验