Suppr超能文献

一株红杆菌对缺氧型砷酸盐的光养氧化作用。

Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain.

机构信息

Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.

Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.

出版信息

Environ Microbiol. 2023 Aug;25(8):1538-1548. doi: 10.1111/1462-2920.16380. Epub 2023 Mar 28.

Abstract

Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)-oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non-As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis-coupled As(III) oxidation in paddy soils, highlighting the importance of light-dependent, microbe-mediated arsenic redox changes in paddy arsenic biogeochemistry.

摘要

微生物介导的砷氧化还原转化是稻田中砷形态和迁移的关键。虽然富含砷的生态系统中广泛研究了与亚砷酸盐(As(III))氧化偶联的厌氧缺氧光合作用,但在稻田土壤中是否存在这种依赖光照的过程尚不清楚。在这里,我们从受砷污染的稻田土壤中分离出一种好氧紫色细菌 Rhodobacter 菌株 CZR27,并证明其能够使用苹果酸作为碳源进行光合作用将 As(III)氧化为砷酸盐(As(V))。基因组测序揭示了一个编码 As(III)氧化酶的 As(III)氧化基因簇(aioXSRBA)。功能分析表明,在缺氧好氧条件下的 As(III)氧化与 As(III)氧化酶大亚基 aioA 基因的转录相关。此外,非 As(III)氧化菌 Rhodobacter capsulatus SB1003 异源表达来自 CZR27 菌株的 aioBA 能够氧化 As(III),表明 aioBA 负责 CZR27 菌株中观察到的 As(III)氧化。我们的研究为稻田土壤中存在厌氧光合作用偶联的 As(III)氧化提供了证据,强调了微生物介导的砷氧化还原变化在稻田砷生物地球化学中的重要性。

相似文献

1
Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain.一株红杆菌对缺氧型砷酸盐的光养氧化作用。
Environ Microbiol. 2023 Aug;25(8):1538-1548. doi: 10.1111/1462-2920.16380. Epub 2023 Mar 28.
3
Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.硝酸盐刺激稻田土壤中厌氧微生物亚砷酸盐氧化。
Environ Sci Technol. 2017 Apr 18;51(8):4377-4386. doi: 10.1021/acs.est.6b06255. Epub 2017 Apr 7.

本文引用的文献

3
Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils.硝酸盐刺激稻田土壤中厌氧微生物亚砷酸盐氧化。
Environ Sci Technol. 2017 Apr 18;51(8):4377-4386. doi: 10.1021/acs.est.6b06255. Epub 2017 Apr 7.
5
The genetic basis of anoxygenic photosynthetic arsenite oxidation.无氧光合亚砷酸盐氧化的遗传基础。
Environ Microbiol. 2017 Jan;19(1):130-141. doi: 10.1111/1462-2920.13509. Epub 2016 Oct 6.
6
The microbial genomics of arsenic.砷的微生物基因组学。
FEMS Microbiol Rev. 2016 Mar;40(2):299-322. doi: 10.1093/femsre/fuv050. Epub 2016 Jan 19.
7
Earth Abides Arsenic Biotransformations.《大地长存:砷的生物转化》
Annu Rev Earth Planet Sci. 2014 May 1;42:443-467. doi: 10.1146/annurev-earth-060313-054942. Epub 2014 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验