Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.
Environ Microbiol. 2023 Aug;25(8):1538-1548. doi: 10.1111/1462-2920.16380. Epub 2023 Mar 28.
Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)-oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non-As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis-coupled As(III) oxidation in paddy soils, highlighting the importance of light-dependent, microbe-mediated arsenic redox changes in paddy arsenic biogeochemistry.
微生物介导的砷氧化还原转化是稻田中砷形态和迁移的关键。虽然富含砷的生态系统中广泛研究了与亚砷酸盐(As(III))氧化偶联的厌氧缺氧光合作用,但在稻田土壤中是否存在这种依赖光照的过程尚不清楚。在这里,我们从受砷污染的稻田土壤中分离出一种好氧紫色细菌 Rhodobacter 菌株 CZR27,并证明其能够使用苹果酸作为碳源进行光合作用将 As(III)氧化为砷酸盐(As(V))。基因组测序揭示了一个编码 As(III)氧化酶的 As(III)氧化基因簇(aioXSRBA)。功能分析表明,在缺氧好氧条件下的 As(III)氧化与 As(III)氧化酶大亚基 aioA 基因的转录相关。此外,非 As(III)氧化菌 Rhodobacter capsulatus SB1003 异源表达来自 CZR27 菌株的 aioBA 能够氧化 As(III),表明 aioBA 负责 CZR27 菌株中观察到的 As(III)氧化。我们的研究为稻田土壤中存在厌氧光合作用偶联的 As(III)氧化提供了证据,强调了微生物介导的砷氧化还原变化在稻田砷生物地球化学中的重要性。