Suppr超能文献

神奇数字有何神奇之处?短期记忆中的分块和数据压缩。

What's magic about magic numbers? Chunking and data compression in short-term memory.

机构信息

Université de Franche-Comté, 30-32 rue Mégevand, 25030 Besançon Cedex, France.

出版信息

Cognition. 2012 Mar;122(3):346-62. doi: 10.1016/j.cognition.2011.11.003. Epub 2011 Dec 15.

Abstract

Short term memory is famously limited in capacity to Miller's (1956) magic number 7±2-or, in many more recent studies, about 4±1 "chunks" of information. But the definition of "chunk" in this context has never been clear, referring only to a set of items that are treated collectively as a single unit. We propose a new more quantitatively precise conception of chunk derived from the notion of Kolmogorov complexity and compressibility: a chunk is a unit in a maximally compressed code. We present a series of experiments in which we manipulated the compressibility of stimulus sequences by introducing sequential patterns of variable length. Our subjects' measured digit span (raw short term memory capacity) consistently depended on the length of the pattern after compression, that is, the number of distinct sequences it contained. The true limit appears to be about 3 or 4 distinct chunks, consistent with many modern studies, but also equivalent to about 7 uncompressed items of typical compressibility, consistent with Miller's famous magical number.

摘要

短期记忆的容量通常被限制在米勒(1956)的神奇数字 7±2 以内——或者在最近的许多研究中,大约是 4±1 个“信息块”。但在这种情况下,“块”的定义从未明确过,仅指一组被视为单个单元的项目。我们从柯尔莫哥洛夫复杂度和可压缩性的概念中提出了一个新的、更定量精确的“块”的概念:块是最大压缩代码中的一个单元。我们提出了一系列实验,通过引入可变长度的序列模式来操纵刺激序列的可压缩性。我们的研究对象的测量数字跨度(原始短期记忆容量)一致取决于压缩后的模式长度,即它包含的不同序列的数量。真实的限制似乎约为 3 或 4 个不同的块,与许多现代研究一致,但也相当于大约 7 个具有典型可压缩性的未压缩项目,与米勒著名的神奇数字一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验