Suppr超能文献

脊髓损伤后大鼠模型中的骨丢失。

Bone loss following spinal cord injury in a rat model.

机构信息

Department of Orthopaedic Surgery, Orthopaedic Bioengineering Laboratory, University of Louisville, Louisville, KY, USA.

出版信息

J Neurotrauma. 2012 May 20;29(8):1676-82. doi: 10.1089/neu.2011.2037. Epub 2012 Feb 22.

Abstract

The current study was undertaken to follow the time course of bone loss in the proximal tibia of rats over several weeks following thoracic contusion spinal cord injury (SCI) of varying severity. It was hypothesized that bone loss would be more pronounced in the more severely injured animals, and that hindlimb weight bearing would help prevent bone loss. Twenty-six female Sprague-Dawley rats (200-225 g, 6-7 weeks old) received standard thoracic (T9) injuries at energies of 6.25, 12.5, 25, or 50 g-cm. The rats were scored weekly for hindlimb function during locomotion. At 0, 2 or 3, and 8 weeks, high-resolution micro-CT images of each right tibia were obtained. Mechanical indentation testing was done to measure the compressive strength of the cancellous bone structure. The 6.25 g-cm group showed near normal locomotion, the 12.5 and 25 g-cm groups showed the ability to frequently or occasionally generate weight-supported plantar steps, respectively, and the 50 g-cm group showed only movement without weight-supported plantar stepping. The 6.25, 12.5 and 25 g-cm groups remained at the same level of bone volume fraction (cancBV/TV=0.24±0.07), while the 50 g-cm group experienced severe bone loss (67%), resulting in significantly lower (p<0.05) bone volume fraction (cancBV/TV=0.11±0.05) at 8 weeks. Proximal tibia cancellous bone strength was reduced by approximately 50% in these severely injured rats. Instead of a linear proportionality between injury severity and bone loss, there appears to be a distinct functional threshold, marked by occasional weight-supported stepping, above which bone loss does not occur.

摘要

本研究旨在观察不同严重程度的胸段撞击性脊髓损伤(SCI)后数周内大鼠近端胫骨的骨丢失过程。假设骨丢失在损伤更严重的动物中更为明显,而后肢负重可有助于预防骨丢失。26 只雌性 Sprague-Dawley 大鼠(200-225 g,6-7 周龄)接受了标准的胸段(T9)损伤,能量分别为 6.25、12.5、25 或 50 g-cm。大鼠在运动过程中每周进行后肢功能评分。在 0、2 或 3 周和 8 周时,对每只右侧胫骨进行高分辨率 micro-CT 成像。进行机械压痕测试以测量松质骨结构的抗压强度。6.25 g-cm 组运动接近正常,12.5 和 25 g-cm 组分别具有频繁或偶尔产生负重跖部步的能力,而 50 g-cm 组仅表现为无负重跖部步的运动。6.25、12.5 和 25 g-cm 组的骨体积分数(cancBV/TV=0.24±0.07)保持相同水平,而 50 g-cm 组则经历了严重的骨丢失(67%),导致 8 周时骨体积分数显著降低(p<0.05)(cancBV/TV=0.11±0.05)。这些严重受伤的大鼠的近端胫骨松质骨强度降低了约 50%。损伤严重程度与骨丢失之间没有线性比例关系,而是存在一个明显的功能阈值,以偶尔的负重跖部步为标志,超过该阈值则不会发生骨丢失。

相似文献

1
Bone loss following spinal cord injury in a rat model.
J Neurotrauma. 2012 May 20;29(8):1676-82. doi: 10.1089/neu.2011.2037. Epub 2012 Feb 22.
3
Changes in the structural and material properties of the tibia in patients with spinal cord injury.
Spinal Cord. 2012 Apr;50(4):333-7. doi: 10.1038/sc.2011.143. Epub 2011 Nov 29.
7
Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model.
Bone. 2019 Mar;120:465-475. doi: 10.1016/j.bone.2018.12.007. Epub 2018 Dec 11.
8
Testosterone dose dependently prevents bone and muscle loss in rodents after spinal cord injury.
J Neurotrauma. 2014 May 1;31(9):834-45. doi: 10.1089/neu.2013.3155.
10
Longitudinal Examination of Bone Loss in Male Rats After Moderate-Severe Contusion Spinal Cord Injury.
Calcif Tissue Int. 2019 Jan;104(1):79-91. doi: 10.1007/s00223-018-0471-8. Epub 2018 Sep 14.

引用本文的文献

1
Systematic Search and Modified e-Delphi Consensus for Serum Bone Biomarkers in Humans and Animal Models with SCI: Methodology.
Top Spinal Cord Inj Rehabil. 2025 Spring;31(2):13-28. doi: 10.46292/sci24-00042. Epub 2025 Jun 19.
5
Rehabilitation: Neurogenic Bone Loss after Spinal Cord Injury.
Biomedicines. 2023 Sep 20;11(9):2581. doi: 10.3390/biomedicines11092581.
6
Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats.
Front Endocrinol (Lausanne). 2023 May 9;14:1035186. doi: 10.3389/fendo.2023.1035186. eCollection 2023.
8
Bone loss after severe spinal cord injury coincides with reduced bone formation and precedes bone blood flow deficits.
J Appl Physiol (1985). 2021 Oct 1;131(4):1288-1299. doi: 10.1152/japplphysiol.00444.2021. Epub 2021 Sep 2.
9
Occupational Activities: Factors That Tip the Balance From Bone Accrual to Bone Loss.
Exerc Sport Sci Rev. 2020 Apr;48(2):59-66. doi: 10.1249/JES.0000000000000217.

本文引用的文献

1
Transient muscle paralysis degrades bone via rapid osteoclastogenesis.
FASEB J. 2012 Mar;26(3):1110-8. doi: 10.1096/fj.11-196642. Epub 2011 Nov 28.
2
Matrix-embedded cells control osteoclast formation.
Nat Med. 2011 Sep 11;17(10):1235-41. doi: 10.1038/nm.2448.
3
Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE.
Calcif Tissue Int. 2010 Nov;87(5):461-8. doi: 10.1007/s00223-010-9407-7. Epub 2010 Aug 20.
4
Immobilization and bone structure in humans.
Arch Biochem Biophys. 2010 Nov 1;503(1):146-52. doi: 10.1016/j.abb.2010.07.008. Epub 2010 Jul 14.
6
Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review.
Spinal Cord. 2009 Jul;47(7):508-18. doi: 10.1038/sc.2008.177. Epub 2009 Jan 27.
7
8
Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin.
J Biol Chem. 2008 Feb 29;283(9):5866-75. doi: 10.1074/jbc.M705092200. Epub 2007 Dec 17.
9
Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading.
Bone. 2008 Jan;42(1):172-9. doi: 10.1016/j.bone.2007.09.047. Epub 2007 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验