Samaj Ladislav, Trizac Emmanuel
Laboratoire de Physique Théorique et Modèles Statistiques, UMR CNRS 8626, Université Paris-Sud, F-91405 Orsay, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041401. doi: 10.1103/PhysRevE.84.041401. Epub 2011 Oct 10.
We present a new analytical approach to the strong electrostatic coupling regime (SC) that can be achieved equivalently at low temperatures, high charges, low dielectric permittivity, etc. Two geometries are analyzed in detail: one charged wall first, and then two parallel walls at small distances that can be likely or oppositely charged. In all cases, only one type of mobile counterions is present, and ensures electroneutrality (salt-free case). The method is based on a systematic expansion around the ground state formed by the two-dimensional Wigner crystal(s) of counterions at the plate(s). The leading SC order stems from a single-particle theory, and coincides with the virial SC approach that has been much studied in the last 10 years. The first correction has the functional form of the virial SC prediction, but the prefactor is different. The present theory is free of divergences and the obtained results, both for symmetrically and asymmetrically charged plates, are in excellent agreement with available data of Monte Carlo simulations under strong and intermediate Coulombic couplings. All results obtained represent relevant improvements over the virial SC estimates. The present SC theory starting from the Wigner crystal and therefore coined Wigner SC, sheds light on anomalous phenomena like the counterion mediated like-charge attraction, and the opposite-charge repulsion.
我们提出了一种针对强静电耦合 regime (SC) 的新分析方法,该方法在低温、高电荷、低介电常数等条件下可等效实现。详细分析了两种几何结构:一种是首先有一个带电壁,然后是两个距离很近的平行壁,它们可能带相同电荷或相反电荷。在所有情况下,仅存在一种类型的可移动反离子,并确保电中性(无盐情况)。该方法基于围绕由板上反离子的二维维格纳晶体形成的基态进行系统展开。主导的 SC 阶次源于单粒子理论,并且与过去十年中得到大量研究的维里 SC 方法一致。首次修正具有维里 SC 预测的函数形式,但前置因子不同。本理论没有发散问题,并且对于对称和非对称带电板所获得的结果,与强库仑耦合和中等库仑耦合下的蒙特卡罗模拟可用数据非常吻合。所获得的所有结果相对于维里 SC 估计都有显著改进。本从维格纳晶体出发并因此命名为维格纳 SC 的 SC 理论,揭示了诸如反离子介导的同电荷吸引和异电荷排斥等异常现象。