Urdapilleta Eugenio, Samengo Inés
Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, Av. E. Bustillo Km 9.500, S. C. de Bariloche, (8400), Río Negro, Argentina,
J Comput Neurosci. 2015 Apr;38(2):405-25. doi: 10.1007/s10827-014-0546-0. Epub 2015 Jan 21.
Sensory neurons are often described in terms of a receptive field, that is, a linear kernel through which stimuli are filtered before they are further processed. If information transmission is assumed to proceed in a feedforward cascade, the receptive field may be interpreted as the external stimulus' profile maximizing neuronal output. The nervous system, however, contains many feedback loops, and sensory neurons filter more currents than the ones representing the transduced external stimulus. Some of the additional currents are generated by the output activity of the neuron itself, and therefore constitute feedback signals. By means of a time-frequency analysis of the input/output transformation, here we show how feedback modifies the receptive field. The model is applicable to various types of feedback processes, from spike-triggered intrinsic conductances to inhibitory synaptic inputs from nearby neurons. We distinguish between the intrinsic receptive field (filtering all input currents) and the effective receptive field (filtering only external stimuli). Whereas the intrinsic receptive field summarizes the biophysical properties of the neuron associated to subthreshold integration and spike generation, only the effective receptive field can be interpreted as the external stimulus' profile maximizing neuronal output. We demonstrate that spike-triggered feedback shifts low-pass filtering towards band-pass processing, transforming integrator neurons into resonators. For strong feedback, a sharp resonance in the spectral neuronal selectivity may appear. Our results provide a unified framework to interpret a collection of previous experimental studies where specific feedback mechanisms were shown to modify the filtering properties of neurons.
感觉神经元通常根据感受野来描述,也就是说,感受野是一种线性核,刺激在进一步处理之前会通过它进行过滤。如果假设信息传递以前馈级联的方式进行,那么感受野可以被解释为使神经元输出最大化的外部刺激的特征。然而,神经系统包含许多反馈回路,并且感觉神经元过滤的电流比代表转导外部刺激的电流更多。一些额外的电流是由神经元自身的输出活动产生的,因此构成了反馈信号。通过对输入/输出转换进行时频分析,我们在此展示了反馈如何改变感受野。该模型适用于各种类型的反馈过程,从峰电位触发的内在电导到来自附近神经元的抑制性突触输入。我们区分了内在感受野(过滤所有输入电流)和有效感受野(仅过滤外部刺激)。虽然内在感受野总结了与阈下整合和峰电位产生相关的神经元的生物物理特性,但只有有效感受野才能被解释为使神经元输出最大化的外部刺激的特征。我们证明,峰电位触发的反馈将低通滤波转变为带通处理,将积分神经元转变为谐振器。对于强反馈,可能会在频谱神经元选择性中出现尖锐的谐振。我们的结果提供了一个统一的框架来解释以前的一系列实验研究,这些研究表明特定的反馈机制会改变神经元的滤波特性。