Weinstein Marvin, Auerbach Assa, Chandra V Ravi
SLAC National Accelerator Laboratory, Stanford, California 94025, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056701. doi: 10.1103/PhysRevE.84.056701. Epub 2011 Nov 9.
We present a modified Lanczos algorithm to diagonalize lattice Hamiltonians with dramatically reduced memory requirements, without restricting to variational ansatzes. The lattice of size N is partitioned into two subclusters. At each iteration the Lanczos vector is projected into two sets of n(svd) smaller subcluster vectors using singular value decomposition. For low entanglement entropy S(ee), (satisfied by short-range Hamiltonians), the truncation error is expected to vanish as exp(-n(svd)(1/S(ee))). Convergence is tested for the Heisenberg model on Kagomé clusters of 24, 30, and 36 sites, with no lattice symmetries exploited, using less than 15 GB of dynamical memory. Generalization of the Lanczos-SVD algorithm to multiple partitioning is discussed, and comparisons to other techniques are given.
我们提出了一种改进的兰索斯算法,用于对晶格哈密顿量进行对角化,该算法显著降低了内存需求,且不局限于变分近似。大小为N的晶格被划分为两个子簇。在每次迭代中,利用奇异值分解将兰索斯向量投影到两组较小的n(svd)个子簇向量中。对于低纠缠熵S(ee)(由短程哈密顿量满足),截断误差预计将以exp(-n(svd)(1/S(ee)))的形式消失。在不利用晶格对称性的情况下,使用少于15GB的动态内存,对24、30和36个格点的 Kagomé 簇上的海森堡模型进行了收敛性测试。讨论了兰索斯 - 奇异值分解(Lanczos-SVD)算法到多重划分的推广,并与其他技术进行了比较。