Suppr超能文献

剖析人类对体育锻炼的反应:一种用于识别和动力学分析代谢生物标志物的计算策略。

Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers.

作者信息

Netzer Michael, Weinberger Klaus M, Handler Michael, Seger Michael, Fang Xiaocong, Kugler Karl G, Graber Armin, Baumgartner Christian

机构信息

Research Group for Clinical Bioinformatics, Institute of Electrical, Electronic and Bioengineering, UMIT, 6060 Hall in Tirol, Austria.

出版信息

J Clin Bioinforma. 2011 Dec 19;1(1):34. doi: 10.1186/2043-9113-1-34.

Abstract

BACKGROUND

In metabolomics, biomarker discovery is a highly data driven process and requires sophisticated computational methods for the search and prioritization of novel and unforeseen biomarkers in data, typically gathered in preclinical or clinical studies. In particular, the discovery of biomarker candidates from longitudinal cohort studies is crucial for kinetic analysis to better understand complex metabolic processes in the organism during physical activity.

FINDINGS

In this work we introduce a novel computational strategy that allows to identify and study kinetic changes of putative biomarkers using targeted MS/MS profiling data from time series cohort studies or other cross-over designs. We propose a prioritization model with the objective of classifying biomarker candidates according to their discriminatory ability and couple this discovery step with a novel network-based approach to visualize, review and interpret key metabolites and their dynamic interactions within the network. The application of our method on longitudinal stress test data revealed a panel of metabolic signatures, i.e., lactate, alanine, glycine and the short-chain fatty acids C2 and C3 in trained and physically fit persons during bicycle exercise.

CONCLUSIONS

We propose a new computational method for the discovery of new signatures in dynamic metabolic profiling data which revealed known and unexpected candidate biomarkers in physical activity. Many of them could be verified and confirmed by literature. Our computational approach is freely available as R package termed BiomarkeR under LGPL via CRAN http://cran.r-project.org/web/packages/BiomarkeR/.

摘要

背景

在代谢组学中,生物标志物的发现是一个高度数据驱动的过程,需要复杂的计算方法来在通常来自临床前或临床研究的数据中搜索和优先选择新的和意外的生物标志物。特别是,从纵向队列研究中发现生物标志物候选物对于动力学分析至关重要,以便更好地理解身体活动期间生物体中复杂的代谢过程。

研究结果

在这项工作中,我们引入了一种新颖的计算策略,该策略允许使用来自时间序列队列研究或其他交叉设计的靶向MS/MS分析数据来识别和研究假定生物标志物的动力学变化。我们提出了一种优先排序模型,其目标是根据生物标志物候选物的鉴别能力对其进行分类,并将这一发现步骤与一种基于网络的新方法相结合,以可视化、审查和解释关键代谢物及其在网络中的动态相互作用。我们的方法在纵向压力测试数据上的应用揭示了一组代谢特征,即在骑自行车运动期间训练有素且身体健康的人的乳酸、丙氨酸、甘氨酸以及短链脂肪酸C2和C3。

结论

我们提出了一种新的计算方法,用于在动态代谢分析数据中发现新的特征,该方法揭示了身体活动中已知和意外的候选生物标志物。其中许多可以通过文献进行验证和确认。我们的计算方法作为一个名为BiomarkeR的R包,根据LGPL协议通过CRAN(http://cran.r-project.org/web/packages/BiomarkeR/)免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/780e/3320562/c0fb50f31d4a/2043-9113-1-34-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验