Suppr超能文献

蛋白质-配体相互作用中构象熵的估算:计算视角

Estimation of conformational entropy in protein-ligand interactions: a computational perspective.

作者信息

Polyansky Anton A, Zubac Ruben, Zagrovic Bojan

机构信息

Laboratory of Computational Biophysics, Department of Structural and Computational Biology, Max Perutz Laboratories, Vienna, Austria.

出版信息

Methods Mol Biol. 2012;819:327-53. doi: 10.1007/978-1-61779-465-0_21.

Abstract

Conformational entropy is an important component of the change in free energy upon binding of a ligand to its target protein. As a consequence, development of computational techniques for reliable estimation of conformational entropies is currently receiving an increased level of attention in the context of computational drug design. Here, we review the most commonly used techniques for conformational entropy estimation from classical molecular dynamics simulations. Although by-and-large still not directly used in practical drug design, these techniques provide a golden standard for developing other, computationally less-demanding methods for such applications, in addition to furthering our understanding of protein-ligand interactions in general. In particular, we focus on the quasi-harmonic approximation and discuss different approaches that can be used to go beyond it, most notably, when it comes to treating anharmonic and/or correlated motions. In addition to reviewing basic theoretical formalisms, we provide a concrete set of steps required to successfully calculate conformational entropy from molecular dynamics simulations, as well as discuss a number of practical issues that may arise in such calculations.

摘要

构象熵是配体与其靶蛋白结合时自由能变化的一个重要组成部分。因此,在计算药物设计背景下,用于可靠估计构象熵的计算技术的开发目前正受到越来越多的关注。在此,我们综述了从经典分子动力学模拟中估计构象熵的最常用技术。尽管总体上这些技术仍未直接应用于实际药物设计,但它们为开发其他计算要求较低的此类应用方法提供了黄金标准,同时也有助于我们进一步理解蛋白质-配体相互作用。特别是,我们重点关注准谐波近似,并讨论可用于超越它的不同方法,尤其是在处理非谐和/或相关运动时。除了综述基本理论形式外,我们还提供了从分子动力学模拟成功计算构象熵所需的具体步骤集,并讨论了此类计算中可能出现的一些实际问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验