Suppr超能文献

尼龙水解酶的三维结构与尼龙-6 水解机制。

Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis.

机构信息

Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo 671-2280.

出版信息

J Biol Chem. 2012 Feb 10;287(7):5079-90. doi: 10.1074/jbc.M111.321992. Epub 2011 Dec 19.

Abstract

We performed x-ray crystallographic analyses of the 6-aminohexanoate oligomer hydrolase (NylC) from Agromyces sp. at 2.0 Å-resolution. This enzyme is a member of the N-terminal nucleophile hydrolase superfamily that is responsible for the degradation of the nylon-6 industry byproduct. We observed four identical heterodimers (27 kDa + 9 kDa), which resulted from the autoprocessing of the precursor protein (36 kDa) and which constitute the doughnut-shaped quaternary structure. The catalytic residue of NylC was identified as the N-terminal Thr-267 of the 9-kDa subunit. Furthermore, each heterodimer is folded into a single domain, generating a stacked αββα core structure. Amino acid mutations at subunit interfaces of the tetramer were observed to drastically alter the thermostability of the protein. In particular, four mutations (D122G/H130Y/D36A/E263Q) of wild-type NylC from Arthrobacter sp. (plasmid pOAD2-encoding enzyme), with a heat denaturation temperature of T(m) = 52 °C, enhanced the protein thermostability by 36 °C (T(m) = 88 °C), whereas a single mutation (G111S or L137A) decreased the stability by ∼10 °C. We examined the enzymatic hydrolysis of nylon-6 by the thermostable NylC mutant. Argon cluster secondary ion mass spectrometry analyses of the reaction products revealed that the major peak of nylon-6 (m/z 10,000-25,000) shifted to a smaller range, producing a new peak corresponding to m/z 1500-3000 after the enzyme treatment at 60 °C. In addition, smaller fragments in the soluble fraction were successively hydrolyzed to dimers and monomers. Based on these data, we propose that NylC should be designated as nylon hydrolase (or nylonase). Three potential uses of NylC for industrial and environmental applications are also discussed.

摘要

我们对来自 Agromyces sp. 的 6-氨基己酸寡聚物水解酶(NylC)进行了 2.0 Å 分辨率的 X 射线晶体学分析。该酶属于 N 端亲核水解酶超家族的成员,负责降解尼龙-6 行业的副产物。我们观察到四个相同的异二聚体(27 kDa + 9 kDa),这是由前体蛋白(36 kDa)的自加工产生的,构成了甜甜圈状的四级结构。NylC 的催化残基被鉴定为 9 kDa 亚基的 N 端 Thr-267。此外,每个异二聚体折叠成单个结构域,形成堆叠的αββα核心结构。在四聚体的亚基界面上观察到氨基酸突变会极大地改变蛋白质的热稳定性。特别是,来自 Arthrobacter sp. 的质粒 pOAD2 编码酶(野生型 NylC)的四个突变(D122G/H130Y/D36A/E263Q),其热变性温度 T(m) = 52°C,使蛋白质的热稳定性提高了 36°C(T(m) = 88°C),而单个突变(G111S 或 L137A)则使稳定性降低了约 10°C。我们检查了耐热 NylC 突变体对尼龙-6 的酶水解。反应产物的氩簇二次离子质谱分析表明,在 60°C 下酶处理后,主要的尼龙-6 峰(m/z 10,000-25,000)移动到较小的范围,产生一个对应于 m/z 1500-3000 的新峰。此外,可溶性部分中的较小片段依次水解为二聚体和单体。基于这些数据,我们提出 NylC 应被指定为尼龙水解酶(或尼龙酶)。还讨论了 NylC 在工业和环境应用中的三种潜在用途。

相似文献

1
Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis.
J Biol Chem. 2012 Feb 10;287(7):5079-90. doi: 10.1074/jbc.M111.321992. Epub 2011 Dec 19.
6
6-Aminohexanoate oligomer hydrolases from the alkalophilic bacteria Agromyces sp. strain KY5R and Kocuria sp. strain KY2.
Appl Environ Microbiol. 2007 Nov;73(21):7099-102. doi: 10.1128/AEM.00777-07. Epub 2007 Sep 7.
7
Crystallization and X-ray diffraction analysis of nylon-oligomer hydrolase (NylC) from Agromyces sp. KY5R.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Aug 1;67(Pt 8):892-5. doi: 10.1107/S1744309111022858. Epub 2011 Jul 19.
10
A new nylon oligomer degradation gene (nylC) on plasmid pOAD2 from a Flavobacterium sp.
J Bacteriol. 1992 Dec;174(24):7948-53. doi: 10.1128/jb.174.24.7948-7953.1992.

引用本文的文献

1
KnowVolution of an Efficient Polyamidase through Molecular Dynamics Simulations of Incrementally Docked Oligomeric Substrates.
ChemSusChem. 2025 Jul 27;18(15):e202500257. doi: 10.1002/cssc.202500257. Epub 2025 Jun 26.
2
Recycling and Degradation Pathways of Synthetic Textile Fibers such as Polyamide and Elastane.
Glob Chall. 2025 Mar 13;9(4):2400163. doi: 10.1002/gch2.202400163. eCollection 2025 Apr.
3
Upcycling of polyamides through chemical hydrolysis and engineered Pseudomonas putida.
Nat Microbiol. 2025 Mar;10(3):667-680. doi: 10.1038/s41564-025-01929-5. Epub 2025 Feb 10.
4
Quantitative nylon monomerization by the combination of chemical pretreatment and enzymatic hydrolysis using nylon hydrolases.
PLoS One. 2025 Feb 10;20(2):e0318641. doi: 10.1371/journal.pone.0318641. eCollection 2025.
5
Identification and characterization of substrate- and product-selective nylon hydrolases.
bioRxiv. 2024 Nov 14:2024.11.14.623603. doi: 10.1101/2024.11.14.623603.
6
The biochemical mechanisms of plastic biodegradation.
FEMS Microbiol Rev. 2024 Nov 23;48(6). doi: 10.1093/femsre/fuae027.
9
Back-to-monomer recycling of polycondensation polymers: opportunities for chemicals and enzymes.
RSC Adv. 2022 Jan 5;12(2):947-970. doi: 10.1039/d1ra08217e. eCollection 2021 Dec 22.
10
A review on marine plastisphere: biodiversity, formation, and role in degradation.
Comput Struct Biotechnol J. 2022 Feb 15;20:975-988. doi: 10.1016/j.csbj.2022.02.008. eCollection 2022.

本文引用的文献

2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Crystallization and X-ray diffraction analysis of nylon-oligomer hydrolase (NylC) from Agromyces sp. KY5R.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Aug 1;67(Pt 8):892-5. doi: 10.1107/S1744309111022858. Epub 2011 Jul 19.
4
7
Molecular design of a nylon-6 byproduct-degrading enzyme from a carboxylesterase with a beta-lactamase fold.
FEBS J. 2009 May;276(9):2547-56. doi: 10.1111/j.1742-4658.2009.06978.x. Epub 2009 Mar 18.
8
Matrix-free detection of intact ions from proteins in argon-cluster secondary ion mass spectrometry.
Rapid Commun Mass Spectrom. 2009 Mar;23(5):648-52. doi: 10.1002/rcm.3922.
9
The mechanism of autocatalytic activation of plant-type L-asparaginases.
J Biol Chem. 2008 May 9;283(19):13388-97. doi: 10.1074/jbc.M800746200. Epub 2008 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验