Suppr超能文献

人类线粒体 DNA 聚合酶 γ 在 UV 诱导的环丁烷胸腺嘧啶二聚体处表现出潜在的修复和突变能力。

Human mitochondrial DNA polymerase γ exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers.

机构信息

Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

出版信息

J Biol Chem. 2012 Mar 16;287(12):9222-9. doi: 10.1074/jbc.M111.306852. Epub 2011 Dec 21.

Abstract

Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells.

摘要

环丁烷胸腺嘧啶二聚体(T-T)构成了由短波长紫外线辐射引起的大多数 DNA 损伤。这些损伤通常会阻止复制性 DNA 聚合酶,并通过核苷酸切除修复或核内跨损伤聚合酶修复。线粒体缺乏核苷酸切除修复,因此,了解唯一的线粒体 DNA 聚合酶 pol γ 如何与不可修复的损伤(如 T-T)相互作用非常重要。我们进行了体外 DNA 聚合酶反应,以测量聚合酶 pol γ 在包含二聚体的模板上与损伤物结合并绕过损伤物的动力学。缺乏外切核酸酶的 pol γ 以相对较低的效率绕过胸腺嘧啶二聚体;当使用外切核酸酶有效的 pol γ 时,旁路被减弱但仍可检测到。当旁路确实发生时,pol γ 在错误掺入的 3'-胸腺嘧啶仅比掺入腺嘌呤少 4 倍的效率掺入鸟嘌呤。令人惊讶的是,pol γ 外切核酸酶有效的酶以相似的速度切除错误掺入的鸟嘌呤,而与模板中胸腺嘧啶的性质无关。在存在所有四个 dNTP 的情况下,pol γ 在掺入两个腺嘌呤后,与延伸至损伤物两侧的腺嘌呤或延伸至 3'-胸腺嘧啶的鸟嘌呤相比,相对较高的效率延伸引物。我们的结果表明,T-T 通常会使线粒体 DNA 复制停滞,但也为慢性暴露于紫外线的细胞中线粒体基因组中引入点突变和缺失提供了一种机制。

相似文献

1
Human mitochondrial DNA polymerase γ exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers.
J Biol Chem. 2012 Mar 16;287(12):9222-9. doi: 10.1074/jbc.M111.306852. Epub 2011 Dec 21.
2
Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.
J Biol Chem. 2013 May 17;288(20):14247-14255. doi: 10.1074/jbc.M113.458802. Epub 2013 Mar 30.
3
DNA polymerase iota-dependent translesion replication of uracil containing cyclobutane pyrimidine dimers.
DNA Repair (Amst). 2006 Feb 3;5(2):210-8. doi: 10.1016/j.dnarep.2005.09.011. Epub 2005 Nov 2.
7
Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase iota.
DNA Repair (Amst). 2003 Sep 18;2(9):991-1006. doi: 10.1016/s1568-7864(03)00094-6.
8
Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae.
DNA Repair (Amst). 2015 Nov;35:1-12. doi: 10.1016/j.dnarep.2015.07.002. Epub 2015 Aug 7.
9
Mutagenic Effects of a 2-Deoxyribonolactone-Thymine Glycol Tandem DNA Lesion in Human Cells.
Biochemistry. 2020 Feb 4;59(4):417-424. doi: 10.1021/acs.biochem.9b01058. Epub 2019 Dec 30.

引用本文的文献

1
Programmed mitophagy at the oocyte-to-zygote transition promotes species immortality.
Res Sq. 2025 Apr 9:rs.3.rs-6330979. doi: 10.21203/rs.3.rs-6330979/v1.
2
Mitochondrial dysfunction and oxidative stress contribute to cross-generational toxicity of benzo(a)pyrene in Danio rerio.
Aquat Toxicol. 2023 Oct;263:106658. doi: 10.1016/j.aquatox.2023.106658. Epub 2023 Aug 12.
3
Rolling Circle Replication and Bypass of Damaged Nucleotides.
Methods Mol Biol. 2023;2615:203-217. doi: 10.1007/978-1-0716-2922-2_15.
4
Human Mitochondrial DNA Polymerase Metal Dependent UV Lesion Bypassing Ability.
Front Mol Biosci. 2022 Mar 9;9:808036. doi: 10.3389/fmolb.2022.808036. eCollection 2022.
5
Polymerase γ efficiently replicates through many natural template barriers but stalls at the HSP1 quadruplex.
J Biol Chem. 2020 Dec 18;295(51):17802-17815. doi: 10.1074/jbc.RA120.015390.
6
Mitophagy and DNA damage signaling in human aging.
Mech Ageing Dev. 2020 Mar;186:111207. doi: 10.1016/j.mad.2020.111207. Epub 2020 Jan 7.
7
Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases.
Nucleic Acids Res. 2017 Oct 13;45(18):10751-10763. doi: 10.1093/nar/gkx744.
8
Mitochondrial DNA replication: a PrimPol perspective.
Biochem Soc Trans. 2017 Apr 15;45(2):513-529. doi: 10.1042/BST20160162.
9
DNA damage related crosstalk between the nucleus and mitochondria.
Free Radic Biol Med. 2017 Jun;107:216-227. doi: 10.1016/j.freeradbiomed.2016.11.050. Epub 2016 Nov 30.
10
DNA polymerase θ specializes in incorporating synthetic expanded-size (xDNA) nucleotides.
Nucleic Acids Res. 2016 Nov 2;44(19):9381-9392. doi: 10.1093/nar/gkw721. Epub 2016 Sep 2.

本文引用的文献

1
Enzyme kinetics of the mitochondrial deoxyribonucleoside salvage pathway are not sufficient to support rapid mtDNA replication.
PLoS Comput Biol. 2011 Aug;7(8):e1002078. doi: 10.1371/journal.pcbi.1002078. Epub 2011 Aug 4.
3
Purification and functional characterization of human mitochondrial DNA polymerase gamma harboring disease mutations.
Methods. 2010 Aug;51(4):379-84. doi: 10.1016/j.ymeth.2010.02.015. Epub 2010 Feb 20.
4
How mitochondria record the effects of UV exposure and oxidative stress using human skin as a model tissue.
Mutagenesis. 2010 Mar;25(2):101-7. doi: 10.1093/mutage/gep061. Epub 2009 Dec 2.
5
Novel DNA mismatch-repair activity involving YB-1 in human mitochondria.
DNA Repair (Amst). 2009 Jun 4;8(6):704-19. doi: 10.1016/j.dnarep.2009.01.021. Epub 2009 Mar 9.
6
Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line.
DNA Repair (Amst). 2008 Sep 1;7(9):1551-62. doi: 10.1016/j.dnarep.2008.05.012. Epub 2008 Jul 21.
7
Partial depletion of mitochondrial DNA from human skin fibroblasts induces a gene expression profile reminiscent of photoaged skin.
J Invest Dermatol. 2008 Sep;128(9):2297-303. doi: 10.1038/jid.2008.57. Epub 2008 Mar 13.
8
What causes mitochondrial DNA deletions in human cells?
Nat Genet. 2008 Mar;40(3):275-9. doi: 10.1038/ng.f.94.
9
Sunbed use induces the photoaging-associated mitochondrial common deletion.
J Invest Dermatol. 2008 May;128(5):1294-7. doi: 10.1038/sj.jid.5701151. Epub 2007 Nov 8.
10
Ultraviolet radiation exposure accelerates the accumulation of the aging-dependent T414G mitochondrial DNA mutation in human skin.
Aging Cell. 2007 Aug;6(4):557-64. doi: 10.1111/j.1474-9726.2007.00310.x. Epub 2007 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验