Chard Kyle, Russell Michael, Lussier Yves A, Mendonça Eneida A, Silverstein Jonathan C
Computation Institute, The University of Chicago, IL, USA.
AMIA Annu Symp Proc. 2011;2011:207-16. Epub 2011 Oct 22.
Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN.
自然语言处理(NLP)能够访问医学文本中嵌入的深层内容。迄今为止,NLP尚未实现其在实现强大的临床编码、临床应用、质量改进和研究方面的承诺。我们认为,这部分是由于NLP系统的可访问性、可扩展性和灵活性较差。我们在此描述一种方法和系统,该方法和系统利用基于云的方法,如虚拟机和代表性状态转移(REST),在灵活安全且可扩展的架构中提取、处理、合成、挖掘、比较/对比、探索和管理医学文本数据。可以部署我们的Smntx(发音为语义)系统的可用架构包括:在符合HIPAA标准的医院环境中的虚拟机,启动以对大量数据进行分析并在本地云中销毁;用于大型复杂多机构试验的商业云;以及在其他架构中,如caGrid、i2b2或NHIN。