Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, USA.
J Am Med Inform Assoc. 2010 May-Jun;17(3):253-64. doi: 10.1136/jamia.2009.002295.
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
作者报告了癌症组织信息提取系统(caTIES)的开发情况。该系统是一个应用程序,利用现有的自然语言处理方法和算法、网格通信和安全框架以及查询可视化方法,支持协作组织库和文本挖掘。该系统填补了组织库和临床试验等转化研究中基于文本的临床数据的重要需求。caTIES 的设计解决了转化研究中信息学支持的三个关键问题:(1)来自临床系统的研究数据源的联合;(2)基于概念的文本挖掘的表达图形界面;(3)支持多中心协作研究的监管和安全模型。该系统在美国各地的几个癌症中心的实施正在创建一个潜在的 caTIES 存储库网络,该网络可以向用户提供数百万份去识别的临床报告。该系统提供了医疗自然语言处理的端到端应用,以支持多机构转化研究计划。