Biotechnology Research Institute, National Research Council of Canada, 6100 Roylamount Avenue, Montreal, QC H4P 2R2, Canada.
J Comput Aided Mol Des. 2012 May;26(5):617-33. doi: 10.1007/s10822-011-9529-7. Epub 2011 Dec 25.
We carried out a prospective evaluation of the utility of the SIE (solvation interaction energy) scoring function for virtual screening and binding affinity prediction. Since experimental structures of the complexes were not provided, this was an exercise in virtual docking as well. We used our exhaustive docking program, Wilma, to provide high-quality poses that were rescored using SIE to provide binding affinity predictions. We also tested the combination of SIE with our latest solvation model, first shell of hydration (FiSH), which captures some of the discrete properties of water within a continuum model. We achieved good enrichment in virtual screening of fragments against trypsin, with an area under the curve of about 0.7 for the receiver operating characteristic curve. Moreover, the early enrichment performance was quite good with 50% of true actives recovered with a 15% false positive rate in a prospective calculation and with a 3% false positive rate in a retrospective application of SIE with FiSH. Binding affinity predictions for both trypsin and host-guest complexes were generally within 2 kcal/mol of the experimental values. However, the rank ordering of affinities differing by 2 kcal/mol or less was not well predicted. On the other hand, it was encouraging that the incorporation of a more sophisticated solvation model into SIE resulted in better discrimination of true binders from binders. This suggests that the inclusion of proper Physics in our models is a fruitful strategy for improving the reliability of our binding affinity predictions.
我们进行了一项关于 SIE(溶剂相互作用能)评分函数在虚拟筛选和结合亲和力预测中的效用的前瞻性评估。由于没有提供复合物的实验结构,因此这也是一项虚拟对接的练习。我们使用我们的全面对接程序 Wilma,提供高质量的构象,然后使用 SIE 重新评分以提供结合亲和力预测。我们还测试了 SIE 与我们最新的溶剂化模型 First Shell of Hydration(FiSH)的结合,该模型捕捉了连续模型中一些水的离散性质。我们在针对胰蛋白酶的片段虚拟筛选中取得了良好的富集效果,受体操作特征曲线的曲线下面积约为 0.7。此外,在前瞻性计算中,用 15%的假阳性率可以回收 50%的真实活性,用 SIE 和 FiSH 的回溯应用程序中用 3%的假阳性率可以回收 50%的真实活性,这表明早期的富集性能非常好。胰蛋白酶和主体-客体复合物的结合亲和力预测通常与实验值相差 2 千卡/摩尔以内。然而,相差 2 千卡/摩尔或更少的亲和力的排序并没有很好地预测。另一方面,令人鼓舞的是,将更复杂的溶剂化模型纳入 SIE 可以更好地区分真正的配体和配体。这表明在我们的模型中包含适当的物理性质是提高我们结合亲和力预测可靠性的一种富有成效的策略。