Suppr超能文献

基于SAMPL4挑战对HIV整合酶结合进行盲预测。

Blind prediction of HIV integrase binding from the SAMPL4 challenge.

作者信息

Mobley David L, Liu Shuai, Lim Nathan M, Wymer Karisa L, Perryman Alexander L, Forli Stefano, Deng Nanjie, Su Justin, Branson Kim, Olson Arthur J

机构信息

Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA,

出版信息

J Comput Aided Mol Des. 2014 Apr;28(4):327-45. doi: 10.1007/s10822-014-9723-5. Epub 2014 Mar 5.

Abstract

Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components--a small "virtual screening" challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.

摘要

在此,我们概述蛋白质与配体建模统计评估4(SAMPL4)挑战中的蛋白质-配体结合部分,该挑战聚焦于预测HIV整合酶抑制剂在催化核心结构域中的结合情况。该挑战包含三个部分——一个小型“虚拟筛选”挑战、一个结合模式预测部分以及一个小型亲和力预测部分。在此,我们给出关于所有参赛作品在这些挑战中每项挑战表现的总结结果和统计数据。虚拟筛选在此处尤其具有挑战性,部分原因在于,与更典型的虚拟筛选测试集不同,这些非活性化合物之所以被测试,是因为它们被认为可能是结合剂,所以只有非常靠前的预测结果才显著优于随机结果。构象预测也颇具挑战性,部分原因是该集合中的抑制剂与三个不同位点结合,所以即便识别出正确的结合位点也很困难。尽管如此,在许多情况下,最佳方法仍能实现较低的均方根偏差预测。在此,我们概述结果,突出表现特别出色的方法的一些特点,并向感兴趣的读者推荐本期中描述具体参赛作品的论文以获取更多详细信息。

相似文献

1
Blind prediction of HIV integrase binding from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):327-45. doi: 10.1007/s10822-014-9723-5. Epub 2014 Mar 5.
3
Exhaustive docking and solvated interaction energy scoring: lessons learned from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):417-27. doi: 10.1007/s10822-014-9715-5. Epub 2014 Jan 29.
4
Virtual screening of the SAMPL4 blinded HIV integrase inhibitors dataset.
J Comput Aided Mol Des. 2014 Apr;28(4):455-62. doi: 10.1007/s10822-014-9707-5. Epub 2014 Jan 24.
5
Interrogating HIV integrase for compounds that bind--a SAMPL challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):347-62. doi: 10.1007/s10822-014-9721-7. Epub 2014 Feb 16.
6
Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.
J Comput Aided Mol Des. 2014 Apr;28(4):363-73. doi: 10.1007/s10822-013-9702-2. Epub 2014 Jan 21.
7
Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):475-90. doi: 10.1007/s10822-014-9711-9. Epub 2014 Feb 7.
8
BEDAM binding free energy predictions for the SAMPL4 octa-acid host challenge.
J Comput Aided Mol Des. 2015 Apr;29(4):315-25. doi: 10.1007/s10822-014-9795-2. Epub 2015 Mar 1.
9
Targeting HIV-1 integrase with strand transfer inhibitors.
Drug Discov Today. 2015 Apr;20(4):435-49. doi: 10.1016/j.drudis.2014.12.001. Epub 2014 Dec 6.
10
SAMPL4 & DOCK3.7: lessons for automated docking procedures.
J Comput Aided Mol Des. 2014 Mar;28(3):201-9. doi: 10.1007/s10822-014-9722-6. Epub 2014 Feb 11.

引用本文的文献

1
ABCG2: A Milestone Charge Model for Accurate Solvation Free Energy Calculation.
J Chem Theory Comput. 2025 Mar 25;21(6):3032-3043. doi: 10.1021/acs.jctc.5c00038. Epub 2025 Mar 11.
3
An overview of the SAMPL8 host-guest binding challenge.
J Comput Aided Mol Des. 2022 Oct;36(10):707-734. doi: 10.1007/s10822-022-00462-5. Epub 2022 Oct 14.
4
SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction.
J Comput Aided Mol Des. 2022 Apr;36(4):291-311. doi: 10.1007/s10822-022-00452-7. Epub 2022 Apr 15.
5
Structure-based virtual screening workflow to identify antivirals targeting HIV-1 capsid.
J Comput Aided Mol Des. 2022 Mar;36(3):193-203. doi: 10.1007/s10822-022-00446-5. Epub 2022 Mar 9.
6
Thermodynamics of Pillararene•Guest Complexation: Blinded Dataset for the SAMPL9 Challenge.
New J Chem. 2022 Jan 21;46(3):995-1002. doi: 10.1039/d1nj05209h. Epub 2021 Dec 13.
7
Application of the alchemical transfer and potential of mean force methods to the SAMPL8 host-guest blinded challenge.
J Comput Aided Mol Des. 2022 Jan;36(1):63-76. doi: 10.1007/s10822-021-00437-y. Epub 2022 Jan 21.
8
Best Practices for Alchemical Free Energy Calculations [Article v1.0].
Living J Comput Mol Sci. 2020;2(1). doi: 10.33011/livecoms.2.1.18378.
9
Evaluation of log P, pK, and log D predictions from the SAMPL7 blind challenge.
J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24.
10
Reversibly Sampling Conformations and Binding Modes Using Molecular Darting.
J Chem Theory Comput. 2021 Jan 12;17(1):302-314. doi: 10.1021/acs.jctc.0c00752. Epub 2020 Dec 8.

本文引用的文献

1
Rapid Prediction of Solvation Free Energy. 2. The First-Shell Hydration (FiSH) Continuum Model.
J Chem Theory Comput. 2010 May 11;6(5):1622-37. doi: 10.1021/ct9006037. Epub 2010 Apr 2.
2
Blind prediction of solvation free energies from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Mar;28(3):135-50. doi: 10.1007/s10822-014-9718-2. Epub 2014 Mar 11.
3
Interrogating HIV integrase for compounds that bind--a SAMPL challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):347-62. doi: 10.1007/s10822-014-9721-7. Epub 2014 Feb 16.
4
SAMPL4 & DOCK3.7: lessons for automated docking procedures.
J Comput Aided Mol Des. 2014 Mar;28(3):201-9. doi: 10.1007/s10822-014-9722-6. Epub 2014 Feb 11.
5
Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):475-90. doi: 10.1007/s10822-014-9711-9. Epub 2014 Feb 7.
6
Exhaustive docking and solvated interaction energy scoring: lessons learned from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):417-27. doi: 10.1007/s10822-014-9715-5. Epub 2014 Jan 29.
7
Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.
J Comput Aided Mol Des. 2014 Apr;28(4):363-73. doi: 10.1007/s10822-013-9702-2. Epub 2014 Jan 21.
8
Biochemical analysis of the role of G118R-linked dolutegravir drug resistance substitutions in HIV-1 integrase.
Antimicrob Agents Chemother. 2013 Dec;57(12):6223-35. doi: 10.1128/AAC.01835-13. Epub 2013 Sep 30.
9
Reduced HIV-1 integrase flexibility as a mechanism for raltegravir resistance.
J Struct Biol. 2013 Nov;184(2):245-50. doi: 10.1016/j.jsb.2013.07.008. Epub 2013 Jul 25.
10
Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8690-5. doi: 10.1073/pnas.1300703110. Epub 2013 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验