Suppr超能文献

详尽对接与溶剂化相互作用能评分:从SAMPL4挑战中学到的经验教训。

Exhaustive docking and solvated interaction energy scoring: lessons learned from the SAMPL4 challenge.

作者信息

Hogues Hervé, Sulea Traian, Purisima Enrico O

机构信息

Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.

出版信息

J Comput Aided Mol Des. 2014 Apr;28(4):417-27. doi: 10.1007/s10822-014-9715-5. Epub 2014 Jan 29.

Abstract

We continued prospective assessments of the Wilma-solvated interaction energy (SIE) platform for pose prediction, binding affinity prediction, and virtual screening on the challenging SAMPL4 data sets including the HIV-integrase inhibitor and two host-guest systems. New features of the docking algorithm and scoring function are tested here prospectively for the first time. Wilma-SIE provides good correlations with actual binding affinities over a wide range of binding affinities that includes strong binders as in the case of SAMPL4 host-guest systems. Absolute binding affinities are also reproduced with appropriate training of the scoring function on available data sets or from comparative estimation of the change in target's vibrational entropy. Even when binding modes are known, SIE predictions lack correlation with experimental affinities within dynamic ranges below 2 kcal/mol as in the case of HIV-integrase ligands, but they correctly signaled the narrowness of the dynamic range. Using a common protein structure for all ligands can reduce the noise, while incorporating a more sophisticated solvation treatment improves absolute predictions. The HIV-integrase virtual screening data set consists of promiscuous weak binders with relatively high flexibility and thus it falls outside of the applicability domain of the Wilma-SIE docking platform. Despite these difficulties, unbiased docking around three known binding sites of the enzyme resulted in over a third of ligands being docked within 2 Å from their actual poses and over half of the ligands docked in the correct site, leading to better-than-random virtual screening results.

摘要

我们继续对Wilma溶剂化相互作用能(SIE)平台进行前瞻性评估,以用于构象预测、结合亲和力预测和虚拟筛选,该评估针对具有挑战性的SAMPL4数据集,包括HIV整合酶抑制剂和两个主客体系统。对接算法和评分函数的新特性在此首次进行前瞻性测试。Wilma-SIE在广泛的结合亲和力范围内与实际结合亲和力具有良好的相关性,其中包括SAMPL4主客体系统中的强结合剂。通过对可用数据集上的评分函数进行适当训练,或通过比较估计靶标振动熵的变化,也能再现绝对结合亲和力。即使结合模式已知,如HIV整合酶配体的情况,在低于2 kcal/mol的动态范围内,SIE预测与实验亲和力缺乏相关性,但它们正确地表明了动态范围的狭窄。对所有配体使用共同的蛋白质结构可以减少噪声,同时采用更复杂的溶剂化处理可改善绝对预测。HIV整合酶虚拟筛选数据集由具有相对较高灵活性的混杂弱结合剂组成,因此它超出了Wilma-SIE对接平台的适用范围。尽管存在这些困难,但围绕该酶的三个已知结合位点进行无偏对接,结果超过三分之一的配体对接位置与其实际构象的距离在2 Å以内,超过一半的配体对接在正确的位点,从而获得了优于随机的虚拟筛选结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验