National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Automation Building, 95# Zhongguancun East Road, Beijing 100190, China.
IEEE Trans Pattern Anal Mach Intell. 2012 Oct;34(10):2031-45. doi: 10.1109/TPAMI.2011.277.
This paper proposes a novel method for interest region description which pools local features based on their intensity orders in multiple support regions. Pooling by intensity orders is not only invariant to rotation and monotonic intensity changes, but also encodes ordinal information into a descriptor. Two kinds of local features are used in this paper, one based on gradients and the other on intensities; hence, two descriptors are obtained: the Multisupport Region Order-Based Gradient Histogram (MROGH) and the Multisupport Region Rotation and Intensity Monotonic Invariant Descriptor (MRRID). Thanks to the intensity order pooling scheme, the two descriptors are rotation invariant without estimating a reference orientation, which appears to be a major error source for most of the existing methods, such as Scale Invariant Feature Transform (SIFT), SURF, and DAISY. Promising experimental results on image matching and object recognition demonstrate the effectiveness of the proposed descriptors compared to state-of-the-art descriptors.
本文提出了一种新的基于局部特征强度顺序的多支持区域描述方法。基于强度顺序的池化不仅对旋转和单调强度变化具有不变性,而且还将有序信息编码到描述符中。本文使用了两种局部特征,一种基于梯度,另一种基于强度;因此,得到了两个描述符:多支持区域基于强度顺序的梯度直方图(MROGH)和多支持区域旋转和强度单调不变描述符(MRRID)。由于强度顺序池化方案,这两个描述符是旋转不变的,无需估计参考方向,这似乎是大多数现有方法(例如 Scale Invariant Feature Transform (SIFT)、SURF 和 DAISY)的主要误差源。在图像匹配和目标识别方面的实验结果表明,与最先进的描述符相比,所提出的描述符是有效的。