Suppr超能文献

BIPCO:基于相位一致性检测器和二值模式描述符的超声特征点

BIPCO: ultrasound feature points based on phase congruency detector and binary pattern descriptor.

作者信息

Dall'Alba Diego, Fiorini Paolo

机构信息

Department of Computer Science, University of Verona, Strada le Grazie, 15, 37134, Verona, Italy,

出版信息

Int J Comput Assist Radiol Surg. 2015 Jun;10(6):843-54. doi: 10.1007/s11548-015-1204-3. Epub 2015 May 1.

Abstract

PURPOSE

Detection of feature points in medical ultrasound (US) images is the starting point of many clinical tasks, such as segmentation of lesions in pathological areas, estimation of organ deformation, and multimodality image fusion. However, obtaining a reliable feature point localization is a complex task even for an expert radiologist due to the US image characteristics: strong presence of noise, insidious artifacts, and low contrast. In this work, we describe a feature detector based on phase congruency (PhC) combined with a binary pattern descriptor.

METHODS

We introduce a feature detector specifically designed for US images and based on PhC analysis. We also introduce a descriptor based on local binary pattern (LBP) operator to improve and simplify the matching between feature points extracted from different images. LBP is not applied directly to the intensity values; instead, it is applied to the PhC output obtained during the detection step to improve robustness to intensity transformation, and the rejection of noise.

RESULTS

We tested the proposed approach compared to state-of- the-art methods applied to real US images subject to realistic synthetic transformations. The results of the proposed method, in terms of accuracy and precision, outperform the state-of-the-art approaches that are not designed for US data.

CONCLUSIONS

The methods described in this work will enable the development of US-based navigation system, which supports automatic feature point detection and matching from US images acquired at different times during the procedure.

摘要

目的

医学超声(US)图像中特征点的检测是许多临床任务的起点,如病理区域病变的分割、器官变形的估计以及多模态图像融合。然而,由于US图像的特征:噪声强烈、存在隐匿伪影以及对比度低,即使对于专业放射科医生而言,获得可靠的特征点定位也是一项复杂的任务。在这项工作中,我们描述了一种基于相位一致性(PhC)并结合二元模式描述符的特征检测器。

方法

我们引入了一种专门为US图像设计的基于PhC分析的特征检测器。我们还引入了一种基于局部二元模式(LBP)算子的描述符,以改进和简化从不同图像中提取的特征点之间的匹配。LBP并非直接应用于强度值;相反,它应用于检测步骤中获得的PhC输出,以提高对强度变换的鲁棒性并抑制噪声。

结果

我们将所提出的方法与应用于经过实际合成变换的真实US图像的现有方法进行了测试比较。就准确性和精确性而言,所提出方法的结果优于未针对US数据设计的现有方法。

结论

这项工作中描述的方法将推动基于US的导航系统的开发,该系统支持从手术过程中不同时间获取的US图像中自动进行特征点检测和匹配。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验