McIver Zak, Moraleda-Montoya Alicia, Chen Zongjia, Epa Ruwan, Starns David, Davy Matthew, García-Alija Mikel, Basle Arnaud, Schubert Mario, Ndeh Didier, Trastoy Beatriz, Williams Spencer J, Guerin Marcelo E, Cartmell Alan
Department of Biology, University of York, York, United Kingdom; Department of Chemistry, York Structural Biology Laboratory, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom.
Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain.
J Biol Chem. 2025 Jun 20;301(8):110407. doi: 10.1016/j.jbc.2025.110407.
Rhamnogalacturonan II is one of the most complex plant cell wall carbohydrates and is composed of 13 different sugars and 21 different glycosidic linkages. It is abundant in fruit and indulgence foods, such as chocolate and wine, making it common in the human diet. The human colonic commensal Bacteroides thetaiotaomicron expresses a consortium of 22 enzymes to metabolize rhamnogalacturonan II, some of which exclusively target sugars unique to rhamnogalacturonan II. Several of these enzyme families remain poorly described, and, consequently, our knowledge of rhamnogalacturonan II metabolism is limited. Chief among the poorly understood activities is glycoside hydrolase (GH) family 139, which targets α1,2-2O-methyl L-fucoside linkages, a sugar residue not found in any other plant cell wall complex glycans. Although the founding enzyme BT0984 was placed in the RG-II degradative pathway, no GH139 structure or catalytic blueprint had been available. We report the crystal structures of BT0984 and a second homolog revealing that the family operates with inverting stereochemistry. Using these data, we undertook a mutagenic strategy, backed by molecular dynamics, to identify the important substrate binding and catalytic residues, mapping these residues throughout the GH139 family revealing the importance of the O2 methyl interaction of the substrate. We propose a catalytic mechanism that uses a non-canonical Asn as a catalytic base and shares similarity with L-fucosidases/L-galactosidases of family GH95.
鼠李半乳糖醛酸聚糖II是最复杂的植物细胞壁碳水化合物之一,由13种不同的糖和21种不同的糖苷键组成。它在水果以及巧克力和葡萄酒等嗜好性食品中含量丰富,因此在人类饮食中很常见。人类结肠共生菌多形拟杆菌表达一组22种酶来代谢鼠李半乳糖醛酸聚糖II,其中一些酶专门作用于鼠李半乳糖醛酸聚糖II特有的糖。这些酶家族中有几个的描述仍然很少,因此,我们对鼠李半乳糖醛酸聚糖II代谢的了解有限。了解最少的活性中主要的是糖苷水解酶(GH)家族139,它作用于α1,2-2-O-甲基-L-岩藻糖苷键,这种糖残基在任何其他植物细胞壁复合聚糖中都不存在。尽管最初发现的酶BT0984被置于RG-II降解途径中,但尚无GH139的结构或催化蓝图。我们报告了BT0984和第二个同源物的晶体结构,表明该家族以构型翻转的立体化学方式发挥作用。利用这些数据,我们在分子动力学的支持下采用了诱变策略,以鉴定重要的底物结合和催化残基,在整个GH139家族中定位这些残基,揭示了底物O2甲基相互作用的重要性。我们提出了一种催化机制,该机制使用非典型的天冬酰胺作为催化碱基,并且与GH95家族的L-岩藻糖苷酶/L-半乳糖苷酶具有相似性。