Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
J Biol Chem. 2010 Sep 24;285(39):30261-73. doi: 10.1074/jbc.M110.141788. Epub 2010 Jul 9.
Enzymatic depolymerization of lignocellulose by microbes in the bovine rumen and the human colon is critical to gut health and function within the host. Prevotella bryantii B(1)4 is a rumen bacterium that efficiently degrades soluble xylan. To identify the genes harnessed by this bacterium to degrade xylan, the transcriptomes of P. bryantii cultured on either wheat arabinoxylan or a mixture of its monosaccharide components were compared by DNA microarray and RNA sequencing approaches. The most highly induced genes formed a cluster that contained putative outer membrane proteins analogous to the starch utilization system identified in the prominent human gut symbiont Bacteroides thetaiotaomicron. The arrangement of genes in the cluster was highly conserved in other xylanolytic Bacteroidetes, suggesting that the mechanism employed by xylan utilizers in this phylum is conserved. A number of genes encoding proteins with unassigned function were also induced on wheat arabinoxylan. Among these proteins, a hypothetical protein with low similarity to glycoside hydrolases was shown to possess endoxylanase activity and subsequently assigned to glycoside hydrolase family 5. The enzyme was designated PbXyn5A. Two of the most similar proteins to PbXyn5A were hypothetical proteins from human colonic Bacteroides spp., and when expressed each protein exhibited endoxylanase activity. By using site-directed mutagenesis, we identified two amino acid residues that likely serve as the catalytic acid/base and nucleophile as in other GH5 proteins. This study therefore provides insights into capture of energy by xylanolytic Bacteroidetes and the application of their enzymes as a resource in the biofuel industry.
瘤胃微生物和人结肠中木质纤维素的酶解对肠道健康和宿主功能至关重要。Prevotella bryantii B(1)4 是一种能够高效降解可溶性木聚糖的瘤胃细菌。为了鉴定该细菌用于降解木聚糖的基因,通过 DNA 微阵列和 RNA 测序方法比较了 P. bryantii 在小麦阿拉伯木聚糖或其单糖成分混合物上培养时的转录组。高度诱导的基因形成了一个簇,其中包含类似于在重要的人类肠道共生菌 Bacteroides thetaiotaomicron 中鉴定出的淀粉利用系统的假定外膜蛋白。该簇中基因的排列在其他木聚糖解淀粉细菌中高度保守,表明该门中木聚糖利用者采用的机制是保守的。在小麦阿拉伯木聚糖上也诱导了许多编码具有未指定功能的蛋白质的基因。在这些蛋白质中,一种与糖苷水解酶相似度低的假定蛋白具有内切木聚糖酶活性,随后被分配到糖苷水解酶家族 5。该酶被命名为 PbXyn5A。与 PbXyn5A 最相似的两种蛋白质是来自人结肠拟杆菌属的假定蛋白,当表达时,每种蛋白质都表现出内切木聚糖酶活性。通过定点突变,我们鉴定了两个可能作为催化酸碱和亲核试剂的氨基酸残基,就像其他 GH5 蛋白一样。因此,这项研究提供了对木质纤维素解淀粉细菌能量捕获的深入了解,并为生物燃料工业应用它们的酶提供了资源。