Suppr超能文献

探寻蛋白质进化中环和结构域的起源及内在无序性。

Tracing the birth and intrinsic disorder of loops and domains in protein evolution.

作者信息

Caetano-Anollés Gustavo, Mughal Fizza, Aziz M Fayez, Caetano-Anollés Kelsey

机构信息

Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.

Callout Biotech, Albuquerque, NM 87112 USA.

出版信息

Biophys Rev. 2024 Nov 20;16(6):723-735. doi: 10.1007/s12551-024-01251-0. eCollection 2024 Dec.

Abstract

Protein loops and structural domains are building blocks of molecular structure. They hold evolutionary memory and are largely responsible for the many functions and processes that drive the living world. Here, we briefly review two decades of phylogenomic data-driven research focusing on the emergence and evolution of these elemental architects of protein structure. Phylogenetic trees of domains reconstructed from the proteomes of organisms belonging to all three superkingdoms and viruses were used to build chronological timelines describing the origin of each domain and its embedded loops at different levels of structural abstraction. These timelines consistently recovered six distinct evolutionary phases and a most parsimonious evolutionary progression of cellular life. The timelines also traced the birth of domain structures from loops, which allowed to model their growth ab initio with AlphaFold2. Accretion decreased the disorder of the growing molecules, suggesting disorder is molecular size-dependent. A phylogenomic survey of disorder revealed that loops and domains evolved differently. Loops were highly disordered, disorder increased early in evolution, and ordered and moderate disordered structures were derived. Gradual replacement of loops with α-helix and β-strand bracing structures over time paved the way for the dominance of more disordered loop types. In contrast, ancient domains were ordered, with disorder evolving as a benefit acquired later in evolution. These evolutionary patterns explain inverse correlations between disorder and sequence length of loops and domains. Our findings provide a deep evolutionary view of the link between structure, disorder, flexibility, and function.

摘要

蛋白质环和结构域是分子结构的组成部分。它们承载着进化记忆,在很大程度上决定了驱动生物世界的众多功能和过程。在此,我们简要回顾二十年来以系统基因组数据为驱动的研究,这些研究聚焦于蛋白质结构的这些基本构建要素的出现和进化。从属于所有三个超界的生物以及病毒的蛋白质组重建的结构域系统发育树,被用于构建按时间顺序排列的时间表,描述每个结构域及其在不同结构抽象层次上嵌入的环的起源。这些时间表一致地揭示了六个不同的进化阶段以及细胞生命最简约的进化进程。这些时间表还追溯了从环中诞生的结构域结构,这使得能够用AlphaFold2从头开始模拟它们的生长。增长减少了生长中分子的无序性,表明无序性与分子大小有关。对无序性的系统基因组学调查表明,环和结构域的进化方式不同。环高度无序,无序性在进化早期增加,随后产生有序和中等无序的结构。随着时间的推移,环逐渐被α螺旋和β链支撑结构取代,为更多无序环类型的主导地位铺平了道路。相比之下,古老的结构域是有序的,无序性是在进化后期获得的一种优势。这些进化模式解释了环和结构域的无序性与序列长度之间的负相关关系。我们的发现为结构、无序性、灵活性和功能之间的联系提供了一个深入的进化视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a0a/11735766/93cb56ee5f9a/12551_2024_1251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验