Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
Genes Cells. 2012 Jan;17(1):65-81. doi: 10.1111/j.1365-2443.2011.01573.x.
A nucleosome is composed of intrinsically disordered histone tails and a structured nucleosome core surrounded by DNA. A variety of modifiable residues on the intrinsically disordered histone tails have been identified in the last decade. Mapping of the functional residues on the structured nucleosome core surface was recently initiated by global analysis of a comprehensive histone point mutant library (histone-GLibrary). It stands to reason that a functional relationship exists between modifiable residues on the intrinsically disordered histone tails and functional residues on the structured nucleosome core; however, this matter has been poorly explored. During transcription elongation, trimethylation of histone H3 at lysine 36 (H3-K36me3) is mediated by histone methyltransferase Set2, which binds to RNA polymerase II. Here, we used a histone-GLibrary that encompasses the nucleosomal DNA entry/exit site to show that six residues (H2A-G107, H2A-I112, H2A-L117, H3-T45, H3-R49 and H3-R52) form a surface on the structured nucleosome core and regulate H3-K36me3. Trimethylation at H3-K4 introduced by histone methyltransferase Set1 was not affected by the mutation of any of the six residues. Chromatin immunoprecipitation analysis showed that most of these residues are critical for the chromatin association of RNA polymerase II and Set2, suggesting that these components regulate H3-K36me3 through functional interactions with the structured nucleosome core surface.
核小体由结构上无序的组蛋白尾部和环绕 DNA 的结构核小体核心组成。在过去的十年中,已经鉴定出在结构上无序的组蛋白尾部上的多种可修饰残基。通过对综合组蛋白点突变文库(组蛋白-GLibrary)的全面分析,最近开始对结构核小体核心表面的功能残基进行作图。在结构上无序的组蛋白尾部上的可修饰残基和结构核小体核心上的功能残基之间存在功能关系,这是理所当然的;然而,这个问题还没有得到很好的探讨。在转录延伸过程中,组蛋白 H3 赖氨酸 36 上的三甲基化(H3-K36me3)由组蛋白甲基转移酶 Set2 介导,后者与 RNA 聚合酶 II 结合。在这里,我们使用了涵盖核小体 DNA 进入/退出位点的组蛋白-GLibrary,表明六个残基(H2A-G107、H2A-I112、H2A-L117、H3-T45、H3-R49 和 H3-R52)在结构核小体核心上形成一个表面,并调节 H3-K36me3。组蛋白甲基转移酶 Set1 引入的 H3-K4 上的三甲基化不受这六个残基中任何一个突变的影响。染色质免疫沉淀分析表明,这些残基中的大多数对于 RNA 聚合酶 II 和 Set2 的染色质结合至关重要,这表明这些组件通过与结构核小体核心表面的功能相互作用来调节 H3-K36me3。