Suppr超能文献

评价 BMP-2 基因激活的肌组织移植物在颅骨缺损修复中的应用。

Evaluation of BMP-2 gene-activated muscle grafts for cranial defect repair.

机构信息

Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, 99 Brookline Avenue, RN-115, Boston, Massachusetts 02215, USA.

出版信息

J Orthop Res. 2012 Jul;30(7):1095-102. doi: 10.1002/jor.22038. Epub 2011 Dec 28.

Abstract

Large, osseous, segmental defects heal poorly. Muscle has a propensity to form bone when exposed to an osteogenic stimulus such as that provided by transfer and expression of cDNA encoding bone morphogenetic protein-2 (BMP-2). The present study evaluated the ability of genetically modified, autologous muscle to heal large cranial defects in rats. Autologous grafts (8 mm × 2 mm) were punched from the biceps femoris muscle and transduced intraoperatively with recombinant adenovirus vector containing human BMP-2 or green fluorescent protein cDNA. While the muscle biopsies were incubating with the vector, a central parietal 8 mm defect was surgically created in the calvarium of the same animal. The gene-activated muscle graft was then implanted into the cranial defect. After 8 weeks, crania were examined radiographically, histologically, and by micro-computed tomography and dual energy X-ray absorptiometry. Although none of the defects were completely healed in this time, muscle grafts expressing BMP-2 deposited more than twice as much new bone as controls. Histology confirmed the anatomical integrity of the newly formed bone, which was comparable in thickness and mineral density to the original cranial bone. This study confirms the in vivo osteogenic properties of genetically modified muscle and suggests novel strategies for healing bone.

摘要

大块的、骨源性的、节段性的缺损很难愈合。当肌肉受到成骨刺激时,例如通过转移和表达编码骨形态发生蛋白-2(BMP-2)的 cDNA,就会有形成骨的倾向。本研究评估了基因修饰的自体肌肉在大鼠大颅缺损中的愈合能力。从股二头肌中切取 8mm×2mm 的自体移植物,并在术中用含有人 BMP-2 或绿色荧光蛋白 cDNA 的重组腺病毒载体转导。在肌肉活检与载体孵育的同时,在同一动物的顶骨上手术创建 8mm 的中央顶骨缺损。然后将基因激活的肌肉移植物植入颅缺损中。8 周后,对颅骨进行放射学、组织学、微计算机断层扫描和双能 X 射线吸收法检查。尽管在这段时间内没有一个缺损完全愈合,但表达 BMP-2 的肌肉移植物沉积的新骨是对照组的两倍多。组织学证实了新形成骨的解剖完整性,其厚度和矿物质密度与原始颅骨相当。本研究证实了基因修饰肌肉的体内成骨特性,并为骨愈合提供了新的策略。

相似文献

1
Evaluation of BMP-2 gene-activated muscle grafts for cranial defect repair.
J Orthop Res. 2012 Jul;30(7):1095-102. doi: 10.1002/jor.22038. Epub 2011 Dec 28.
2
Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage.
Eur Cell Mater. 2009 Dec 31;18:96-111. doi: 10.22203/ecm.v018a09.
4
Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice.
J Bone Joint Surg Am. 2001 Jul;83(7):1032-9. doi: 10.2106/00004623-200107000-00008.
6
The effect of BMP-7 gene activated muscle tissue implants on the repair of large segmental bone defects.
Injury. 2015 Dec;46(12):2351-8. doi: 10.1016/j.injury.2015.09.016. Epub 2015 Sep 28.

引用本文的文献

1
A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration.
Pharmaceutics. 2022 Jan 5;14(1):132. doi: 10.3390/pharmaceutics14010132.
3
Gene therapy for bone healing: lessons learned and new approaches.
Transl Res. 2021 Oct;236:1-16. doi: 10.1016/j.trsl.2021.04.009. Epub 2021 May 5.
4
Relaxin enhances bone regeneration with BMP-2-loaded hydroxyapatite microspheres.
J Biomed Mater Res A. 2020 May;108(5):1231-1242. doi: 10.1002/jbm.a.36897. Epub 2020 Feb 24.
6
BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry.
Pharmaceutics. 2019 Aug 5;11(8):393. doi: 10.3390/pharmaceutics11080393.
7
Recent Advances and Future of Gene Therapy for Bone Regeneration.
Curr Osteoporos Rep. 2018 Aug;16(4):504-511. doi: 10.1007/s11914-018-0459-3.
8
Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering.
Biomed Res Int. 2017;2017:8619385. doi: 10.1155/2017/8619385. Epub 2017 Jan 22.
10
3-D Scaffold Platform for Optimized Non-viral Transfection of Multipotent Stem Cells.
J Mater Chem B. 2014 Dec 14;2(46):8186-8193. doi: 10.1039/C4TB00957F.

本文引用的文献

1
Orthopedic gene therapy--lost in translation?
J Cell Physiol. 2012 Feb;227(2):416-20. doi: 10.1002/jcp.23031.
2
Gene therapy finds its niche.
Nat Biotechnol. 2011 Feb;29(2):121-8. doi: 10.1038/nbt.1769.
3
Cranial bone defects: current and future strategies.
Neurosurg Focus. 2010 Dec;29(6):E8. doi: 10.3171/2010.9.FOCUS10201.
4
Gene therapy for bone healing.
Expert Rev Mol Med. 2010 Jun 23;12:e18. doi: 10.1017/S1462399410001493.
5
Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage.
Eur Cell Mater. 2009 Dec 31;18:96-111. doi: 10.22203/ecm.v018a09.
6
Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP).
Bone. 2008 Sep;43(3):427-33. doi: 10.1016/j.bone.2008.05.013. Epub 2008 May 28.
7
Heterotopic ossification in patients after total hip replacement.
Ortop Traumatol Rehabil. 2007 May-Jun;9(3):264-72.
8
Facilitated endogenous repair: making tissue engineering simple, practical, and economical.
Tissue Eng. 2007 Aug;13(8):1987-93. doi: 10.1089/ten.2006.0302.
9
Combat orthopaedics: a view from the trenches.
J Am Acad Orthop Surg. 2006;14(10 Spec No.):S10-7. doi: 10.5435/00124635-200600001-00004.
10
Osteogenesis induced by autologous bone marrow cells transplant in the pediatric skull.
Childs Nerv Syst. 2006 Sep;22(9):1158-66. doi: 10.1007/s00381-006-0100-0. Epub 2006 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验