School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Chemphyschem. 2012 Feb;13(2):549-61. doi: 10.1002/cphc.201100712. Epub 2011 Dec 30.
A concept describing the nanostructure-directed dynamics of acid/base interaction and the balance between physisorption and chemisorption on an extrinsic semiconductor interface is evaluated and compared for n- and p-type semiconductors. The inverse hard/soft acid/base (IHSAB) concept, as it complements the HSAB concept, defines the nature of a dominant physisorption behavior and enables the creation of a matrix of controllable interactions. The technology results in the coupling of Lewis acid/base chemistry with the extrinsic semiconductor majority carriers. Nanoporous silicon layers facilitate the application of nanostructured metal/metal oxides, which provide sensitivity and selectivity for the modified interface. Applied fractional depositions can produce a dominant reversible physisorptive (sensors) or chemisorptive (microreactors) interaction at the semiconductor interface as the nanostructures act as antennas to focus the interaction. The dynamic natures of n- and p-type silicon are evaluated and compared, by focusing on the controlled manipulation of these semiconductors as they are modified with nanostructures and interact with the gas-phase analytes. The observed semiconductor responses correlate well with the temperature dependence of the extrinsic semiconductor, the population of the donor or acceptor levels, and the inherent mobilities of electrons. The response of the modified n-type semiconductors is found to exceed that of comparable p-type systems. The IHSAB concept can be extended to assess the properties of several additional semiconductor interfaces including nanowires. The results obtained not only pertain to sensor and microreactor array design, but also suggest the importance of the dynamic changes created, as the majority charge-carrier concentrations are manipulated and the Fermi energies are modified through chemical interaction.
一种描述纳米结构导向的酸碱相互作用动力学以及在外延半导体界面上物理吸附和化学吸附之间平衡的概念,用于评估和比较 n 型和 p 型半导体。逆硬/软酸碱(IHSAB)概念作为 HSAB 概念的补充,定义了主要物理吸附行为的性质,并能够创建可控相互作用的矩阵。该技术实现了路易斯酸碱化学与外半导体多数载流子的耦合。多孔硅层有利于金属/金属氧化物的纳米结构化,为修饰界面提供了灵敏度和选择性。应用分数沉积可以在外延半导体界面上产生主要的可逆物理吸附(传感器)或化学吸附(微反应器)相互作用,因为纳米结构作为天线来聚焦相互作用。通过聚焦于这些半导体与纳米结构的受控相互作用以及与气相分析物的相互作用,评估和比较了 n 型和 p 型硅的动态性质。观察到的半导体响应与外半导体的温度依赖性、施主或受主能级的占据以及电子的固有迁移率密切相关。改性 n 型半导体的响应被发现超过可比的 p 型系统。IHSAB 概念可以扩展到评估包括纳米线在内的几种其他半导体界面的性质。所得结果不仅与传感器和微反应器阵列设计有关,而且还表明通过化学相互作用操纵多数载流子浓度和修改费米能所产生的动态变化的重要性。