Department of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA ; Department of Mechanical Engineering, Georgia Tech, Atlanta, Georgia 30332, USA.
Beilstein J Nanotechnol. 2013;4:20-31. doi: 10.3762/bjnano.4.3. Epub 2013 Jan 14.
Nanostructure-decorated n-type semiconductor interfaces are studied in order to develop chemical sensing with nanostructured materials. We couple the tenets of acid/base chemistry with the majority charge carriers of an extrinsic semiconductor. Nanostructured islands are deposited in a process that does not require self-assembly in order to direct a dominant electron-transduction process that forms the basis for reversible chemical sensing in the absence of chemical-bond formation. Gaseous analyte interactions on a metal-oxide-decorated n-type porous silicon interface show a dynamic electron transduction to and from the interface depending upon the relative strength of the gas and metal oxides. The dynamic interaction of NO with TiO(2), SnO(2), NiO, Cu(x)O, and Au(x)O (x >> 1), in order of decreasing acidity, demonstrates this effect. Interactions with the metal-oxide-decorated interface can be modified by the in situ nitridation of the oxide nanoparticles, enhancing the basicity of the decorated interface. This process changes the interaction of the interface with the analyte. The observed change to the more basic oxinitrides does not represent a simple increase in surface basicity but appears to involve a change in molecular electronic structure, which is well explained by using the recently developed IHSAB model. The optical pumping of a TiO(2) and TiO(2-) (x)N(x) decorated interface demonstrates a significant enhancement in the ability to sense NH(3) and NO(2). Comparisons to traditional metal-oxide sensors are also discussed.
为了开发基于纳米结构材料的化学传感技术,研究了纳米结构修饰的 n 型半导体界面。我们将酸碱化学的原理与外半导体的多数电荷载流子相结合。通过不要求自组装的沉积工艺,在纳米结构岛中沉积了纳米结构,以引导主导的电子输运过程,从而在没有化学键形成的情况下为可逆化学传感奠定基础。在金属氧化物修饰的 n 型多孔硅界面上,气态分析物的相互作用显示出依赖于气体和金属氧化物相对强度的动态电子输运到界面和从界面输运。NO 与 TiO(2)、SnO(2)、NiO、Cu(x)O 和 Au(x)O(x >> 1)的动态相互作用,按酸度递减的顺序,证明了这一效应。通过氧化物纳米粒子的原位氮化可以修饰与金属氧化物修饰界面的相互作用,增强修饰界面的碱性。这一过程改变了界面与分析物的相互作用。观察到的更碱性的氧氮化物的变化不是表面碱性的简单增加,而是似乎涉及分子电子结构的变化,这可以通过最近开发的 IHSAB 模型很好地解释。TiO(2)和 TiO(2-)(x)N(x)修饰界面的光学泵浦证明了对 NH(3)和 NO(2)进行传感的能力有显著提高。还讨论了与传统金属氧化物传感器的比较。