Suppr超能文献

先进数据收集与质量保证方法在开放性前瞻性研究中的应用——以PONS项目为例

Application of advanced data collection and quality assurance methods in open prospective study - a case study of PONS project.

作者信息

Wawrzyniak Zbigniew M, Paczesny Daniel, Mańczuk Marta, Zatoński Witold A

机构信息

Institute of Electronics Systems, Warsaw University of Technology, Warsaw, Poland.

出版信息

Ann Agric Environ Med. 2011;18(2):207-14.

Abstract

INTRODUCTION

Large-scale epidemiologic studies can assess health indicators differentiating social groups and important health outcomes of the incidence and mortality of cancer, cardiovascular disease, and others, to establish a solid knowledgebase for the prevention management of premature morbidity and mortality causes. This study presents new advanced methods of data collection and data management systems with current data quality control and security to ensure high quality data assessment of health indicators in the large epidemiologic PONS study (The Polish-Norwegian Study).

MATERIAL AND METHODS

The material for experiment is the data management design of the large-scale population study in Poland (PONS) and the managed processes are applied into establishing a high quality and solid knowledge.

RESULTS

The functional requirements of the PONS study data collection, supported by the advanced IT web-based methods, resulted in medical data of a high quality, data security, with quality data assessment, control process and evolution monitoring are fulfilled and shared by the IT system. Data from disparate and deployed sources of information are integrated into databases via software interfaces, and archived by a multi task secure server.

CONCLUSIONS

The practical and implemented solution of modern advanced database technologies and remote software/hardware structure successfully supports the research of the big PONS study project. Development and implementation of follow-up control of the consistency and quality of data analysis and the processes of the PONS sub-databases have excellent measurement properties of data consistency of more than 99%. The project itself, by tailored hardware/software application, shows the positive impact of Quality Assurance (QA) on the quality of outcomes analysis results, effective data management within a shorter time. This efficiency ensures the quality of the epidemiological data and indicators of health by the elimination of common errors of research questionnaires and medical measurements.

摘要

引言

大规模流行病学研究可以评估区分社会群体的健康指标以及癌症、心血管疾病等发病率和死亡率等重要健康结果,从而为预防过早发病和死亡原因的管理建立坚实的知识库。本研究提出了新的先进数据收集和数据管理系统方法,以及当前的数据质量控制和安全措施,以确保在大规模流行病学PONS研究(波兰-挪威研究)中对健康指标进行高质量的数据评估。

材料与方法

实验材料为波兰大规模人群研究(PONS)的数据管理设计,所采用的管理流程用于建立高质量且可靠的知识体系。

结果

PONS研究数据收集的功能需求由先进的基于网络的信息技术方法提供支持,从而产生了高质量的医学数据、数据安全性,并且信息技术系统实现并共享了数据质量评估、控制过程及进展监测。来自不同且分散的信息源的数据通过软件接口集成到数据库中,并由多任务安全服务器进行存档。

结论

现代先进数据库技术及远程软件/硬件结构的实际应用解决方案成功支持了大型PONS研究项目的研究工作。PONS子数据库数据分析的一致性和质量以及相关过程的后续控制的开发与实施具有超过99%的数据一致性的出色测量属性。该项目本身通过量身定制的硬件/软件应用,显示了质量保证(QA)对结果分析质量的积极影响,即在更短时间内实现有效的数据管理。这种效率通过消除研究问卷和医学测量中的常见错误来确保流行病学数据和健康指标的质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验