Grupo de Neurodegeneración y Neuroreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
J Neurosci. 2012 Jan 4;32(1):68-84. doi: 10.1523/JNEUROSCI.3215-11.2012.
Rho-associated kinase (ROCK) regulates neural cell migration, proliferation and survival, dendritic spine morphology, and axon guidance and regeneration. There is, however, little information about whether ROCK modulates the electrical activity and information processing of neuronal circuits. At neonatal stage, ROCKα is expressed in hypoglossal motoneurons (HMNs) and in their afferent inputs, whereas ROCKβ is found in synaptic terminals on HMNs, but not in their somata. Inhibition of endogenous ROCK activity in neonatal rat brainstem slices failed to modulate intrinsic excitability of HMNs, but strongly attenuated the strength of their glutamatergic and GABAergic synaptic inputs. The mechanism acts presynaptically to reduce evoked neurotransmitter release. ROCK inhibition increased myosin light chain (MLC) phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. Functional and ultrastructural changes induced by ROCK inhibition were fully prevented/reverted by MLC kinase (MLCK) inhibition. Furthermore, ROCK inhibition drastically reduced the phosphorylated form of p21-associated kinase (PAK), which directly inhibits MLCK. We conclude that endogenous ROCK activity is necessary for the normal performance of motor output commands, because it maintains afferent synaptic strength, by stabilizing the size of the readily releasable pool of synaptic vesicles. The mechanism of action involves a tonic inhibition of MLCK, presumably through PAK phosphorylation. This mechanism might be present in adults since unilateral microinjection of ROCK or MLCK inhibitors into the hypoglossal nucleus reduced or increased, respectively, whole XIIth nerve activity.
Rho 相关激酶(ROCK)调节神经细胞的迁移、增殖和存活、树突棘形态、轴突导向和再生。然而,关于 ROCK 是否调节神经元回路的电活动和信息处理,信息很少。在新生儿期,ROCKα在舌下运动神经元(HMN)及其传入输入中表达,而 ROCKβ存在于 HMN 的突触末端,但不存在于它们的体部。在新生大鼠脑干切片中抑制内源性 ROCK 活性未能调节 HMN 的固有兴奋性,但强烈减弱了它们的谷氨酸能和 GABA 能突触输入的强度。该机制作用于突触前,减少诱发神经递质释放。ROCK 抑制增加肌球蛋白轻链(MLC)磷酸化,这已知会引发肌球蛋白收缩,并减少与兴奋性末梢中活跃区域对接的突触小泡数量。由 ROCK 抑制引起的功能和超微结构变化通过肌球蛋白轻链激酶(MLCK)抑制得到完全预防/逆转。此外,ROCK 抑制大大降低了 p21 相关激酶(PAK)的磷酸化形式,PAK 直接抑制 MLCK。我们得出结论,内源性 ROCK 活性对于正常的运动输出指令表现是必要的,因为它通过稳定易释放的突触小泡池的大小来维持传入突触的强度。作用机制涉及对 MLCK 的紧张性抑制,可能通过 PAK 磷酸化。这种机制可能存在于成年人中,因为单侧舌下神经核内注射 ROCK 或 MLCK 抑制剂分别减少或增加了整个第十二脑神经的活动。