Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.
PLoS One. 2011;6(12):e26354. doi: 10.1371/journal.pone.0026354. Epub 2011 Dec 29.
Functional magnetic resonance imaging (fMRI) can be combined with genotype assessment to identify brain systems that mediate genetic vulnerability to mental disorders ("imaging genetics"). A data analysis approach that is widely applied is "functional connectivity". In this approach, the temporal correlation between the fMRI signal from a pre-defined brain region (the so-called "seed point") and other brain voxels is determined. In this technical note, we show how the choice of freely selectable data analysis parameters strongly influences the assessment of the genetic modulation of connectivity features. In our data analysis we exemplarily focus on three methodological parameters: (i) seed voxel selection, (ii) noise reduction algorithms, and (iii) use of additional second level covariates. Our results show that even small variations in the implementation of a functional connectivity analysis can have an impact on the connectivity pattern that is as strong as the potential modulation by genetic allele variants. Some effects of genetic variation can only be found for one specific implementation of the connectivity analysis. A reoccurring difficulty in the field of psychiatric genetics is the non-replication of initially promising findings, partly caused by the small effects of single genes. The replication of imaging genetic results is therefore crucial for the long-term assessment of genetic effects on neural connectivity parameters. For a meaningful comparison of imaging genetics studies however, it is therefore necessary to provide more details on specific methodological parameters (e.g., seed voxel distribution) and to give information how robust effects are across the choice of methodological parameters.
功能磁共振成像(fMRI)可以与基因型评估相结合,以识别介导精神障碍遗传易感性的大脑系统(“影像遗传学”)。广泛应用的数据分析方法是“功能连接”。在这种方法中,确定来自预定义脑区(所谓的“种子点”)的 fMRI 信号与其他脑体素之间的时间相关性。在本技术说明中,我们展示了可自由选择的数据分析参数的选择如何强烈影响对连接特征遗传调制的评估。在我们的数据分析中,我们特别关注三个方法学参数:(i)种子体素选择,(ii)降噪算法,以及(iii)使用额外的二级协变量。我们的结果表明,即使在功能连接分析的实现中存在微小的变化,也会对连接模式产生与遗传等位变体潜在调制一样强的影响。遗传变异的一些影响只能在连接分析的特定实现中找到。精神遗传学领域的一个反复出现的困难是最初有希望的发现无法复制,部分原因是单个基因的影响较小。因此,对神经连接参数的遗传效应进行长期评估对于复制影像遗传学结果至关重要。然而,为了对影像遗传学研究进行有意义的比较,因此有必要提供有关特定方法学参数(例如种子体素分布)的更多详细信息,并提供有关在选择方法学参数时效应的稳健性信息。