Suppr超能文献

基于回归的矩形公差区域作为检验医学中的参考区域。

Regression-based rectangular tolerance regions as reference regions in laboratory medicine.

作者信息

Garcia Iana Michelle L, Lucagbo Michael Daniel C

机构信息

School of Statistics, University of the Philippines Diliman, Quezon City, Philippines.

出版信息

J Appl Stat. 2024 Oct 8;52(5):1040-1062. doi: 10.1080/02664763.2024.2411614. eCollection 2025.

Abstract

Reference ranges are invaluable in laboratory medicine, as these are indispensable tools for the interpretation of laboratory test results. When assessing measurements on a single analyte, univariate reference intervals are required. In many cases, however, measurements on several analytes are needed by medical practitioners to diagnose more complicated conditions such as kidney function or liver function. For such cases, it is recommended to use multivariate reference regions, which account for the cross-correlations among the analytes. Traditionally, multivariate reference regions (MRRs) have been constructed as ellipsoidal regions. The disadvantage of such regions is that they are unable to detect component-wise outlying measurements. Because of this, rectangular reference regions have recently been put forward in the literature. In this study, we develop methodologies to compute rectangular MRRs that incorporate covariate information, which are often necessary in evaluating laboratory test results. We construct the reference region using tolerance-based criteria so that the resulting region possesses the multiple use property. Results show that the proposed regions yield coverage probabilities that are accurate and are robust to the sample size. Finally, we apply the proposed procedures to a real-life example on the computation of an MRR for three components of the insulin-like growth factor system.

摘要

参考范围在检验医学中非常重要,因为它们是解释实验室检测结果不可或缺的工具。在评估单一分析物的测量值时,需要单变量参考区间。然而,在许多情况下,医生需要测量多种分析物来诊断更复杂的病症,如肾功能或肝功能。对于此类情况,建议使用多变量参考区域,其考虑了分析物之间的相互关系。传统上,多变量参考区域(MRR)被构建为椭圆形区域。此类区域的缺点是无法检测各分量的异常测量值。因此,文献中最近提出了矩形参考区域。在本研究中,我们开发了计算包含协变量信息的矩形MRR的方法,这些信息在评估实验室检测结果时通常是必要的。我们使用基于公差的标准构建参考区域,以使所得区域具有多重使用属性。结果表明,所提出的区域产生的覆盖概率准确,并且对样本量具有稳健性。最后,我们将所提出的程序应用于一个实际例子,即计算胰岛素样生长因子系统三个组分的MRR。

相似文献

7
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

本文引用的文献

5
Reference range: Which statistical intervals to use?参考范围:应使用哪些统计区间?
Stat Methods Med Res. 2021 Feb;30(2):523-534. doi: 10.1177/0962280220961793. Epub 2020 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验