Suppr超能文献

马肝谷胱甘肽S-转移酶谷胱甘肽结合位点的抑制与识别研究。

Inhibition and recognition studies on the glutathione-binding site of equine liver glutathione S-transferase.

作者信息

D'Silva C

机构信息

Institute of Molecular and Biomolecular Electronics, University of Wales, Bangor, Gwynedd, U.K.

出版信息

Biochem J. 1990 Oct 1;271(1):161-5. doi: 10.1042/bj2710161.

Abstract

Equine liver glutathione S-transferase has been shown to consist of two identical subunits of apparent Mr 25,500 and a pl of 8.9. Kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene as a substrate suggests a random rapid-equilibrium mechanism, which is supported by inhibition studies using glutathione analogues. S-(p-Bromobenzyl)glutathione and the corresponding N alpha-, CGlu- and CGly-substituted derivatives have been found, at pH 6.5, to be linear competitive inhibitors, with respect to GSH, of glutathione transferase. N-Acetylation of S-(p-bromobenzyl)glutathione decreases binding by 100-fold, whereas N-benzoylation and N-benzyloxycarbonylation abolish binding of the derivative to the enzyme. The latter effect has been attributed to a steric constraint in this region of the enzyme. Amidation of the glycine carboxy group of S-(p-bromobenzyl)glutathione decreases binding by 13-fold, whereas methylation decreases binding by 70-fold, indicating a steric constraint and a possible electrostatic interaction in this region of the enzyme. Amidation of both carboxy groups decreases binding significantly by 802-fold, which agrees with electrostatic interaction of the glutamic acid carboxy group with a group located on the enzyme.

摘要

马肝谷胱甘肽S-转移酶已被证明由两个表观分子量为25,500且等电点为8.9的相同亚基组成。在pH 6.5条件下以1-氯-2,4-二硝基苯为底物的动力学数据表明其为随机快速平衡机制,这一机制得到了使用谷胱甘肽类似物的抑制研究的支持。在pH 6.5时,已发现S-(对溴苄基)谷胱甘肽以及相应的Nα-、CGlu-和CGly-取代衍生物是谷胱甘肽转移酶相对于谷胱甘肽(GSH)的线性竞争性抑制剂。S-(对溴苄基)谷胱甘肽的N-乙酰化使结合能力降低100倍,而N-苯甲酰化和N-苄氧羰基化则消除了该衍生物与酶的结合。后一种效应归因于酶的这一区域存在空间位阻。S-(对溴苄基)谷胱甘肽甘氨酸羧基的酰胺化使结合能力降低13倍,而甲基化使结合能力降低70倍,这表明在酶的这一区域存在空间位阻和可能的静电相互作用。两个羧基的酰胺化使结合能力显著降低802倍,这与谷氨酸羧基与酶上一个基团的静电相互作用相符。

相似文献

5
Kinetic mechanism of octopus hepatopancreatic glutathione transferase in reverse micelles.
Biochem J. 1996 Apr 15;315 ( Pt 2)(Pt 2):599-606. doi: 10.1042/bj3150599.
8
Role of the N-terminus of glutathione in the action of yeast glyoxalase I.
Biochem J. 1982 Nov 1;207(2):323-29. doi: 10.1042/bj2070323.
9
A rapid equilibrium random sequential bi-bi mechanism for human placental glutathione S-transferase.
Biochim Biophys Acta. 1989 Sep 14;998(1):7-13. doi: 10.1016/0167-4838(89)90111-8.
10
Purification and kinetic mechanism of the glutathione S-transferase from C6/36, an Aedes albopictus cell line.
Arch Biochem Biophys. 1994 Apr;310(1):134-43. doi: 10.1006/abbi.1994.1149.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Effect of ligandin on the efflux of Co-deuteroporphyrin from isolated rat liver mitochondria.
Biochem Biophys Res Commun. 1981 May 29;100(2):651-9. doi: 10.1016/s0006-291x(81)80225-2.
3
Affinity chromatography of hepatic glutathione S-transferases on omega-aminoalkyl sepharose derivatives of glutathione.
Biochim Biophys Acta. 1981 Jun 15;659(2):362-9. doi: 10.1016/0005-2744(81)90062-0.
5
Synthesis of N-acylglutathione derivatives by dimethylaminopyridine catalysis.
Biochem J. 1982 Nov 1;207(2):329-32. doi: 10.1042/bj2070329.
6
Role of the N-terminus of glutathione in the action of yeast glyoxalase I.
Biochem J. 1982 Nov 1;207(2):323-29. doi: 10.1042/bj2070323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验