Suppr超能文献

原位校准前向压力水平的进一步评估。

Further assessment of forward pressure level for in situ calibration.

机构信息

Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

J Acoust Soc Am. 2011 Dec;130(6):3882-92. doi: 10.1121/1.3655878.

Abstract

Quantifying ear-canal sound level in forward pressure has been suggested as a more accurate and practical alternative to sound pressure level (SPL) calibrations used in clinical settings. The mathematical isolation of forward (and reverse) pressure requires defining the Thévenin-equivalent impedance and pressure of the sound source and characteristic impedance of the load; however, the extent to which inaccuracies in characterizing the source and/or load impact forward pressure level (FPL) calibrations has not been specifically evaluated. This study examined how commercially available probe tips and estimates of characteristic impedance impact the calculation of forward and reverse pressure in a number of test cavities with dimensions chosen to reflect human ear-canal dimensions. Results demonstrate that FPL calibration, which has already been shown to be more accurate than in situ SPL calibration, can be improved particularly around standing-wave null frequencies by refining estimates of characteristic impedance. Better estimates allow FPL to be accurately calculated at least through 10 kHz using a variety of probe tips in test cavities of different sizes, suggesting that FPL calibration can be performed in ear canals of all sizes. Additionally, FPL calibration appears a reasonable option when quantifying the levels of extended high-frequency (10-18 kHz) stimuli.

摘要

已经有人提出,在临床环境中,量化耳道中的正向声压级比使用声压级(SPL)校准更为准确和实用。正向(和反向)压力的数学隔离需要定义声源的 Thévenin 等效阻抗和压力以及负载的特性阻抗;然而,尚未具体评估声源和/或负载特性的不准确性对正向压力级(FPL)校准的影响程度。本研究检查了在尺寸选择以反映人耳道尺寸的多个测试腔中,商业上可用的探头尖端和特性阻抗的估计值如何影响正向和反向压力的计算。结果表明,FPL 校准已经被证明比原位 SPL 校准更准确,通过改进特性阻抗的估计值,特别是在驻波零频率附近,可以进一步提高校准的准确性。更好的估计值允许使用各种探头尖端在不同尺寸的测试腔中至少在 10 kHz 处准确计算 FPL,这表明 FPL 校准可以在所有尺寸的耳道中进行。此外,当量化扩展高频(10-18 kHz)刺激的水平时,FPL 校准似乎是一个合理的选择。

相似文献

1
Further assessment of forward pressure level for in situ calibration.
J Acoust Soc Am. 2011 Dec;130(6):3882-92. doi: 10.1121/1.3655878.
2
Comparison of in-situ calibration methods for quantifying input to the middle ear.
J Acoust Soc Am. 2009 Dec;126(6):3114-24. doi: 10.1121/1.3243310.
6
Distribution of standing-wave errors in real-ear sound-level measurements.
J Acoust Soc Am. 2011 May;129(5):3134-40. doi: 10.1121/1.3569726.
8
A new method to estimate sound energy entering the middle ear.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:29-32. doi: 10.1109/EMBC.2013.6609429.
9
Calibration of ear canals for audiometry at high frequencies.
J Acoust Soc Am. 1987 Feb;81(2):470-84. doi: 10.1121/1.394913.
10
Acoustics of ear canal measurement of eardrum SPL in simulators.
J Acoust Soc Am. 1986 Sep;80(3):783-93. doi: 10.1121/1.393953.

引用本文的文献

2
Detection of mild sensory hearing loss using a joint reflection-distortion otoacoustic emission profile.
J Acoust Soc Am. 2024 Oct 1;156(4):2220-2236. doi: 10.1121/10.0030399.
5
Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops.
Ear Hear. 2023;44(6):1437-1450. doi: 10.1097/AUD.0000000000001387. Epub 2023 Jul 14.
6
Rethinking the clinical utility of distortion-product otoacoustic emission (DPOAE) signal-to-noise ratio.
Int J Audiol. 2024 Jul;63(7):491-499. doi: 10.1080/14992027.2023.2215943. Epub 2023 Jun 2.
7
Minimum Detectable Differences in Electrocochleography Measurements: Bayesian-Based Predictions.
J Assoc Res Otolaryngol. 2023 Apr;24(2):217-237. doi: 10.1007/s10162-023-00888-0. Epub 2023 Feb 16.
8
Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults.
J Assoc Res Otolaryngol. 2022 Oct;23(5):647-664. doi: 10.1007/s10162-022-00857-z. Epub 2022 Jul 8.

本文引用的文献

1
Inverse solution of ear-canal area function from reflectance.
J Acoust Soc Am. 2011 Dec;130(6):3873-81. doi: 10.1121/1.3654019.
2
Calibration of otoacoustic emission probe microphones.
J Acoust Soc Am. 2011 Oct;130(4):EL238-43. doi: 10.1121/1.3632047.
3
Distribution of standing-wave errors in real-ear sound-level measurements.
J Acoust Soc Am. 2011 May;129(5):3134-40. doi: 10.1121/1.3569726.
5
Do "optimal" conditions improve distortion product otoacoustic emission test performance?
Ear Hear. 2011 Mar-Apr;32(2):230-7. doi: 10.1097/AUD.0b013e3181fa5da2.
8
Comparison of in-situ calibration methods for quantifying input to the middle ear.
J Acoust Soc Am. 2009 Dec;126(6):3114-24. doi: 10.1121/1.3243310.
10
An in situ calibration for hearing thresholds.
J Acoust Soc Am. 2009 Mar;125(3):1605-11. doi: 10.1121/1.3075551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验