Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
Stem Cells Dev. 2012 Aug 10;21(12):2298-311. doi: 10.1089/scd.2011.0688. Epub 2012 Feb 15.
Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.
多能干细胞(iPSCs)的诱导源自体细胞类型,随后对疾病特异性或患者特异性 iPSCs 进行遗传修饰,这是将其应用于疾病建模以及未来的细胞和基因治疗的关键步骤。这些过程的常规程序需要与原代小鼠胚胎成纤维细胞(MEFs)共培养,以支持人类 iPSCs 和胚胎干细胞(ESCs)的自我更新和克隆生长。然而,MEF 质量的可变性会影响所有这些步骤的效率。此外,动物来源的饲养细胞可能会阻碍人类干细胞的临床应用。为了克服这些障碍,我们通过在成人间充质干细胞中稳定表达人端粒酶逆转录酶、Wnt3a 和耐药基因,建立了永生化的人饲养细胞系。在这里,我们证明这些永生化的人饲养细胞支持无病毒、无整合的人类 iPSCs 的高效诱导,以及人类 iPSCs 和 ESCs 的长期扩增。此外,这些饲养细胞的耐药特性还支持非病毒基因转移和表达,效率很高,由 piggyBac DNA 转座介导。重要的是,这些人饲养细胞在支持同源重组介导的基因靶向人类 iPSCs 方面表现出优于 MEFs 的能力,使我们能够有效地将转基因靶向到最近无整合 iPSCs 中的 AAVS1 安全港基因座。我们的研究结果对人类 iPSCs 的疾病建模和转化应用具有重要意义,因为这些工程化的人细胞系为遗传修饰提供了更有效的工具,并为支持人类 iPSCs 和 ESCs 的自我更新提供了更安全的替代方案。