Maddox Amy S, Maddox Paul S
Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal Quebec, Canada.
Methods Cell Biol. 2012;107:1-34. doi: 10.1016/B978-0-12-394620-1.00001-1.
Differential interference contrast (DIC) imaging of Caenorhabditis elegans embryogenesis led to a Nobel Prize in Physiology or Medicine (Sulston et al., 1983) as did the first use of green fluorescent protein (GFP) in a transgenic C. elegans (Chalfie et al., 1994). Given that C. elegans is free living, does not require exceptional environmental control, and is optically clear, live imaging is a powerful tool in for this model system. Combining genetics with high-resolution imaging has continued to make important contributions to many fields. In this chapter, we discuss how certain aspects of high-resolution microscopy are implemented. This is not an exhaustive review of microscopy; it is meant to be a helpful guide and point of reference for some basic concepts in imaging. While these concepts are largely true for all biological imaging, they are chosen as particularly important for C. elegans.
秀丽隐杆线虫胚胎发育的微分干涉差(DIC)成像获得了诺贝尔生理学或医学奖(萨尔斯顿等人,1983年),在转基因秀丽隐杆线虫中首次使用绿色荧光蛋白(GFP)也获得了该奖(查尔菲等人,1994年)。鉴于秀丽隐杆线虫是自由生活的,不需要特殊的环境控制,并且在光学上是透明的,活细胞成像对于这个模型系统来说是一个强大的工具。将遗传学与高分辨率成像相结合继续在许多领域做出重要贡献。在本章中,我们将讨论高分辨率显微镜的某些方面是如何实现的。这不是对显微镜的详尽综述;它旨在成为成像中一些基本概念的有用指南和参考点。虽然这些概念在所有生物成像中大体上都是正确的,但它们被选为对秀丽隐杆线虫特别重要。