Suppr超能文献

分析油漆断面:一种用于解释 μATR-FTIR 高光谱数据数组的组合多元方法。

Analysis of paint cross-sections: a combined multivariate approach for the interpretation of μATR-FTIR hyperspectral data arrays.

机构信息

Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Ravenna, Italy.

出版信息

Anal Bioanal Chem. 2013 Jan;405(2-3):625-33. doi: 10.1007/s00216-011-5680-1. Epub 2012 Jan 8.

Abstract

The present research is aimed at introducing a suitable approach for the exploitation of the hyperspectral data obtained by μATR-FTIR analyses of paint cross-sections. The application of principal component analysis for chemical mapping is well-established, even if a very limited number of applications to μFTIR data have been reported so far in the field of analytical chemistry for cultural heritage. Moreover, in many cases, chemometric tools are under-utilized and the outcomes under-interpreted. As a consequence, results and conclusions may be considerably compromised. In an attempt to overcome such drawbacks, the present work is proposing a comprehensive and efficient procedure based on an interactive brushing approach, which combines the structural information of the score scatter plots and the spatial information of the principal component (PC) score maps. In particular, the study demonstrates not only how the multivariate approach may provide more information than the univariate one, but also how the integration of different chemometric tools may allow a more comprehensive interpretation of the results with respect to the studies up to now reported in the literature. The examination of the average spectral profile of each score cluster, jointly with the loading analysis, is functional to characterize each area investigated on the basis of its spectral features. A multivariate comparison with spectra of standard compounds, projected in the PC score space, helps in supporting the chemical identification. The approach was validated on two real case studies.

摘要

本研究旨在介绍一种适用于 μATR-FTIR 分析油漆横断面获得的高光谱数据开发的方法。主成分分析(PCA)在化学绘图中的应用已经得到很好的确立,尽管迄今为止在文化遗产分析化学领域中,只有非常有限的应用报告了 μFTIR 数据。此外,在许多情况下,化学计量学工具的利用率较低,结果的解释也不够充分。因此,结果和结论可能会受到很大影响。为了克服这些缺点,本工作提出了一种基于交互刷选方法的综合高效程序,该方法结合了得分散点图的结构信息和主成分(PC)得分图的空间信息。特别是,该研究不仅展示了多元方法如何提供比单变量方法更多的信息,还展示了如何集成不同的化学计量学工具可以允许更全面地解释结果,这与迄今为止文献中报道的研究相比。检查每个得分簇的平均光谱轮廓,以及加载分析,有助于根据其光谱特征对每个研究区域进行特征描述。与在 PC 得分空间中投影的标准化合物的多元比较有助于支持化学识别。该方法在两个实际案例研究中得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验