Suppr超能文献

实质与现实——星形胶质细胞如何参与突触事件。

Artifact versus reality--how astrocytes contribute to synaptic events.

机构信息

Division of Glia Disease and Therapeutics, Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14580, USA.

出版信息

Glia. 2012 Jul;60(7):1013-23. doi: 10.1002/glia.22288. Epub 2012 Jan 6.

Abstract

The neuronal doctrine, developed a century ago regards neuronal networks as the sole substrate of higher brain function. Recent advances in glial physiology have promoted an alternative hypothesis, which places information processing in the brain into integrated neuronal-glial networks utilizing both binary (neuronal action potentials) and analogue (diffusional propagation of second messengers/metabolites through gap junctions or transmitters through the interstitial space) signal encoding. It has been proposed that the feed-forward and feed-back communication between these two types of neural cells, which underlies information transfer and processing, is accomplished by the release of neurotransmitters from neuronal terminals as well as from astroglial processes. Understanding of this subject, however, remains incomplete and important questions and controversies require resolution. Here we propose that the primary function of perisynaptic glial processes is to create an "astroglial cradle" that shields the synapse from a multitude of extrasynaptic signaling events and provides for multifaceted support and long-term plasticity of synaptic contacts through variety of mechanisms, which may not necessarily involve the release of "glio" transmitters.

摘要

一个世纪以前提出的神经元学说认为,神经网络是大脑高级功能的唯一基础。近年来神经胶质生理学的进展提出了另一种假说,即将大脑中的信息处理纳入整合的神经元-神经胶质网络,利用二元(神经元动作电位)和模拟(通过缝隙连接或通过间质空间的递质扩散传播的第二信使/代谢物)信号编码。有人提出,这两种类型的神经细胞之间的前馈和反馈通讯是通过神经元末梢以及星形胶质细胞过程中神经递质的释放来完成的,信息传递和处理就是由此实现的。然而,对这一主题的理解仍不完整,需要解决一些重要的问题和争议。在这里,我们提出,突触周围胶质过程的主要功能是创建一个“星形胶质细胞摇篮”,将突触与大量的突触外信号事件隔离开来,并通过多种机制为突触接触提供多方面的支持和长期的可塑性,这些机制不一定涉及“胶质”递质的释放。

相似文献

1
Artifact versus reality--how astrocytes contribute to synaptic events.
Glia. 2012 Jul;60(7):1013-23. doi: 10.1002/glia.22288. Epub 2012 Jan 6.
2
Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity.
J Neurochem. 2009 Feb;108(3):533-44. doi: 10.1111/j.1471-4159.2008.05830.x.
3
Glia: the many ways to modulate synaptic plasticity.
Neurochem Int. 2010 Nov;57(4):440-5. doi: 10.1016/j.neuint.2010.02.013. Epub 2010 Mar 1.
4
Glial cells in neuronal network function.
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 12;365(1551):2375-81. doi: 10.1098/rstb.2009.0313.
5
Neuron-astrocyte communication and synaptic plasticity.
Curr Opin Neurobiol. 2010 Aug;20(4):466-73. doi: 10.1016/j.conb.2010.04.008. Epub 2010 May 12.
6
Astroglial cradle in the life of the synapse.
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 19;369(1654):20130595. doi: 10.1098/rstb.2013.0595.
7
GLIA modulates synaptic transmission.
Brain Res Rev. 2010 May;63(1-2):93-102. doi: 10.1016/j.brainresrev.2009.10.005. Epub 2009 Nov 6.
8
Glial modulation of synaptic transmission in culture.
Glia. 2004 Aug 15;47(3):241-248. doi: 10.1002/glia.20026.
9
GLIA: listening and talking to the synapse.
Nat Rev Neurosci. 2001 Mar;2(3):185-93. doi: 10.1038/35058528.
10
Tripartite synapses: astrocytes process and control synaptic information.
Trends Neurosci. 2009 Aug;32(8):421-31. doi: 10.1016/j.tins.2009.05.001. Epub 2009 Jul 15.

引用本文的文献

1
Dual Oxytocin Signals in Striatal Astrocytes.
Biomolecules. 2025 Aug 4;15(8):1122. doi: 10.3390/biom15081122.
3
Deficient Astrocyte Homeostatic Support Contributes to Brain Impairment in Duchenne Muscular Dystrophy.
Neurochem Res. 2025 Jun 26;50(4):213. doi: 10.1007/s11064-025-04464-1.
5
Revealing and Characterizing Astrocytic Atrophy in an Animal Model of Depression.
Methods Mol Biol. 2025;2896:271-285. doi: 10.1007/978-1-0716-4366-2_21.
6
The Role of Complexity Theory in Understanding Brain's Neuron-Glia Interactions.
Eur J Neurosci. 2025 Mar;61(5):e70050. doi: 10.1111/ejn.70050.
7
Mechanisms of Cancer-Induced Bone Pain.
J Pain Res. 2025 Jan 20;18:315-326. doi: 10.2147/JPR.S498466. eCollection 2025.
9
Computational modeling of the relationship between morphological heterogeneity and functional responses in mouse hippocampal astrocytes.
Front Cell Neurosci. 2024 Oct 17;18:1474948. doi: 10.3389/fncel.2024.1474948. eCollection 2024.
10
ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model.
Front Cell Neurosci. 2024 Oct 10;18:1472374. doi: 10.3389/fncel.2024.1472374. eCollection 2024.

本文引用的文献

1
Regulation of synaptic connectivity by glia.
Nature. 2010 Nov 11;468(7321):223-31. doi: 10.1038/nature09612.
2
Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes.
Neuron. 2010 Oct 6;68(1):113-26. doi: 10.1016/j.neuron.2010.08.043.
3
Selective induction of astrocytic gliosis generates deficits in neuronal inhibition.
Nat Neurosci. 2010 May;13(5):584-91. doi: 10.1038/nn.2535. Epub 2010 Apr 25.
5
Do astrocytes really exocytose neurotransmitters?
Nat Rev Neurosci. 2010 Apr;11(4):227-38. doi: 10.1038/nrn2803.
6
Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling.
Science. 2010 Mar 5;327(5970):1250-4. doi: 10.1126/science.1184821.
7
Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior.
Annu Rev Physiol. 2010;72:335-55. doi: 10.1146/annurev-physiol-021909-135843.
8
Dynamical mean field model of a neural-glial mass.
Neural Comput. 2010 Apr;22(4):969-97. doi: 10.1162/neco.2009.04-09-1002.
9
Motor behavior activates Bergmann glial networks.
Neuron. 2009 May 14;62(3):400-12. doi: 10.1016/j.neuron.2009.03.019.
10
Temporally precise in vivo control of intracellular signalling.
Nature. 2009 Apr 23;458(7241):1025-9. doi: 10.1038/nature07926. Epub 2009 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验