Ren Lei, Yan Dong, Zhong Wenwan
Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA.
Carbon N Y. 2012 Mar 1;50(3):1303-1310. doi: 10.1016/j.carbon.2011.10.053.
Better understanding of electron transfer (ET) taking place at the nano-bio interface can guide design of more effective functional materials used in fuel cells, biosensors, and medical devices. Single-walled carbon nanotube (SWCNT) coupled with biological enzymes serves as a model system for studying the ET mechanism, as demonstrated in the present study. SWCNT enhanced the activity of horseradish peroxidase (HRP) in the solution-based redox reaction by binding to HRP at a site proximate to the enzyme's activity center and participating in the ET process. ET to and from SWCNT was clearly observable using near-infrared spectroscopy. The capability of SWCNT in receiving electrons and the direct attachment of HRP to the surface of SWCNT strongly affected the enzyme activity due to the direct involvement of SWCNT in ET.
更好地理解在纳米-生物界面发生的电子转移(ET)可以指导用于燃料电池、生物传感器和医疗设备的更有效功能材料的设计。如本研究所示,单壁碳纳米管(SWCNT)与生物酶耦合作为研究电子转移机制的模型系统。SWCNT通过在靠近酶活性中心的位点与辣根过氧化物酶(HRP)结合并参与电子转移过程,增强了基于溶液的氧化还原反应中辣根过氧化物酶(HRP)的活性。使用近红外光谱可以清楚地观察到与SWCNT之间的电子转移。由于SWCNT直接参与电子转移,SWCNT接收电子的能力以及HRP与SWCNT表面的直接附着强烈影响了酶的活性。