Suppr超能文献

一种规划的循环网络模型解释了海马体重放和人类行为。

A recurrent network model of planning explains hippocampal replay and human behavior.

机构信息

Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.

Sainsbury Wellcome Centre, University College London, London, UK.

出版信息

Nat Neurosci. 2024 Jul;27(7):1340-1348. doi: 10.1038/s41593-024-01675-7. Epub 2024 Jun 7.

Abstract

When faced with a novel situation, people often spend substantial periods of time contemplating possible futures. For such planning to be rational, the benefits to behavior must compensate for the time spent thinking. Here, we capture these features of behavior by developing a neural network model where planning itself is controlled by the prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences from its own policy, which we call 'rollouts'. In a spatial navigation task, the agent learns to plan when it is beneficial, which provides a normative explanation for empirical variability in human thinking times. Additionally, the patterns of policy rollouts used by the artificial agent closely resemble patterns of rodent hippocampal replays. Our work provides a theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by-and adaptively affect-prefrontal dynamics.

摘要

当面对新情况时,人们通常会花费大量时间思考可能的未来。为了使这种规划具有合理性,行为的收益必须弥补思考所花费的时间。在这里,我们通过开发一个神经网络模型来捕捉行为的这些特征,其中规划本身由前额叶皮层控制。该模型由一个元强化学习代理组成,该代理具有通过从其自身策略中采样想象的动作序列进行规划的能力,我们称之为“rollouts”。在空间导航任务中,当代理受益时,它会学习进行规划,这为人类思考时间的经验可变性提供了一个规范解释。此外,人工代理使用的策略 rollout 模式与啮齿动物海马体重放的模式非常相似。我们的工作提供了一种理论,说明大脑如何通过前额叶-海马体相互作用来实现规划,其中海马体重放由前额叶动力学触发,并自适应地影响前额叶动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adcb/11239510/782b0b555b42/41593_2024_1675_Fig1_HTML.jpg

相似文献

1
A recurrent network model of planning explains hippocampal replay and human behavior.
Nat Neurosci. 2024 Jul;27(7):1340-1348. doi: 10.1038/s41593-024-01675-7. Epub 2024 Jun 7.
4
Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching.
Neuron. 2020 Apr 8;106(1):154-165.e6. doi: 10.1016/j.neuron.2020.01.015. Epub 2020 Feb 6.
5
Predictive Representations in Hippocampal and Prefrontal Hierarchies.
J Neurosci. 2022 Jan 12;42(2):299-312. doi: 10.1523/JNEUROSCI.1327-21.2021. Epub 2021 Nov 19.
6
Stress Disrupts Human Hippocampal-Prefrontal Function during Prospective Spatial Navigation and Hinders Flexible Behavior.
Curr Biol. 2020 May 18;30(10):1821-1833.e8. doi: 10.1016/j.cub.2020.03.006. Epub 2020 Apr 2.
7
Rapid learning of spatial representations for goal-directed navigation based on a novel model of hippocampal place fields.
Neural Netw. 2023 Apr;161:116-128. doi: 10.1016/j.neunet.2023.01.010. Epub 2023 Jan 19.
8
The Role of Hippocampal Replay in Memory and Planning.
Curr Biol. 2018 Jan 8;28(1):R37-R50. doi: 10.1016/j.cub.2017.10.073.
9
A robotic model of hippocampal reverse replay for reinforcement learning.
Bioinspir Biomim. 2022 Dec 2;18(1). doi: 10.1088/1748-3190/ac9ffc.
10
Prefrontal-hippocampal interactions for spatial navigation.
Neurosci Res. 2018 Apr;129:2-7. doi: 10.1016/j.neures.2017.04.016. Epub 2017 May 3.

引用本文的文献

1
The Role of Inner Speech in Human Behavior: Reflective Inner Speech Cycle (RISC) Model.
Integr Psychol Behav Sci. 2025 Jul 14;59(3):56. doi: 10.1007/s12124-025-09925-4.
2
Discovering cognitive strategies with tiny recurrent neural networks.
Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09142-4.
4
Adaptive planning depth in human problem-solving.
R Soc Open Sci. 2025 Apr 9;12(4):241161. doi: 10.1098/rsos.241161. eCollection 2025 Apr.
5
Effects of noise and metabolic cost on cortical task representations.
Elife. 2025 Jan 21;13:RP94961. doi: 10.7554/eLife.94961.
7
The role of training variability for model-based and model-free learning of an arbitrary visuomotor mapping.
PLoS Comput Biol. 2024 Sep 27;20(9):e1012471. doi: 10.1371/journal.pcbi.1012471. eCollection 2024 Sep.

本文引用的文献

1
Generative replay underlies compositional inference in the hippocampal-prefrontal circuit.
Cell. 2023 Oct 26;186(22):4885-4897.e14. doi: 10.1016/j.cell.2023.09.004. Epub 2023 Oct 6.
2
Expertise increases planning depth in human gameplay.
Nature. 2023 Jun;618(7967):1000-1005. doi: 10.1038/s41586-023-06124-2. Epub 2023 May 31.
3
Hippocampal representations of foraging trajectories depend upon spatial context.
Nat Neurosci. 2022 Dec;25(12):1693-1705. doi: 10.1038/s41593-022-01201-7. Epub 2022 Nov 29.
4
Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems.
Nat Neurosci. 2022 Oct;25(10):1314-1326. doi: 10.1038/s41593-022-01149-8. Epub 2022 Sep 28.
5
Rational use of cognitive resources in human planning.
Nat Hum Behav. 2022 Aug;6(8):1112-1125. doi: 10.1038/s41562-022-01332-8. Epub 2022 Apr 28.
6
Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping.
Neuron. 2022 May 4;110(9):1547-1558.e8. doi: 10.1016/j.neuron.2022.02.002. Epub 2022 Feb 17.
7
Planning in the brain.
Neuron. 2022 Mar 16;110(6):914-934. doi: 10.1016/j.neuron.2021.12.018. Epub 2022 Jan 17.
8
Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice.
Neuron. 2021 Oct 6;109(19):3149-3163.e6. doi: 10.1016/j.neuron.2021.07.029. Epub 2021 Aug 26.
9
The temporal dynamics of opportunity costs: A normative account of cognitive fatigue and boredom.
Psychol Rev. 2022 Apr;129(3):564-585. doi: 10.1037/rev0000309. Epub 2021 Aug 12.
10
Experience replay is associated with efficient nonlocal learning.
Science. 2021 May 21;372(6544). doi: 10.1126/science.abf1357.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验