Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto-City, Japan.
Antioxid Redox Signal. 2012 May 15;16(10):1119-28. doi: 10.1089/ars.2011.4495. Epub 2012 Feb 23.
Nascent polypeptides entering the endoplasmic reticulum (ER) are co- and post-translationally modified by N-glycosylation and the oxidation/isomerization of cysteine residues followed by folding with the aid of molecular chaperones. Only properly folded proteins reach their final destination. The oxidative environment in the ER enables ER-resident oxidoreductases to facilitate disulfide bond formation, which stabilizes protein structures. ER oxidoreductases involve in both the productive folding of newly synthesized proteins and ER-associated degradation (ERAD) of misfolded proteins.
The ER luminal event of ERAD is composed of three major steps: the recognition and segregation of terminally misfolded proteins from folding intermediates, unfolding of misfolded substrates by oxidoreductases that cleave the disulfide bonds to enable the translocation of the substrates through the retrotranslocation channel, and transport of substrates to be degraded to the dislocon channel. The factors required for these three critical steps have been found to form a supramolecular complex in the ER.
This complex comprises EDEM1, a lectin-like molecule that recognizes mannose-trimming and segregates the identified substrates from the productive folding pathway into the degradation pathway; ER DnaJ (ERdj)5, a reductase that resides in the ER and reduces disulfides in misfolded proteins; and immunoglobulin heavy chain binding protein (BiP), an heat shock protein (Hsp)70 family molecular chaperone that recruits substrates to the dislocon channel after dissociation from the EDEM1/ERdj5 complex coupled with ATP hydrolysis.
The importance of disulfide bond reduction in misfolded proteins for retrotranslocation through the dislocon channel will be discussed by comparing the function of ERdj5 with that of other oxidoreductases in the ER.
新生多肽进入内质网(ER)后,通过 N-糖基化和半胱氨酸残基的氧化/异构化以及分子伴侣的辅助折叠进行共翻译和翻译后修饰。只有正确折叠的蛋白质才能到达其最终目的地。ER 中的氧化环境使 ER 驻留的氧化还原酶能够促进二硫键形成,从而稳定蛋白质结构。ER 氧化还原酶参与新合成蛋白质的有效折叠和错误折叠蛋白质的内质网相关降解(ERAD)。
ERAD 的 ER 腔事件由三个主要步骤组成:从折叠中间体中识别和分离末端错误折叠的蛋白质、氧化还原酶使错误折叠的底物展开,这些酶切断二硫键,使底物通过逆向转运通道易位,以及将底物转运到降解到去垢剂通道。已经发现这些三个关键步骤所需的因素在 ER 中形成一个超分子复合物。
该复合物包含 EDEM1,一种识别甘露糖修剪的凝集素样分子,它将鉴定的底物从有生产力的折叠途径中与错误折叠的蛋白质分离到降解途径中;驻留在 ER 中的 ER DnaJ(ERdj)5,一种还原酶,可还原错误折叠蛋白质中的二硫键;以及免疫球蛋白重链结合蛋白(BiP),一种热休克蛋白(Hsp)70 家族分子伴侣,在与 ATP 水解偶联从 EDEM1/ERdj5 复合物解离后,将底物募集到去垢剂通道。
通过与去垢剂通道的逆向转运比较 ERdj5 与 ER 中其他氧化还原酶的功能,将讨论错误折叠蛋白质中二硫键还原对于逆向转运的重要性。