Suppr超能文献

对比度归一化有助于建立初级视觉皮层(V1)中感受野发育的生物学合理模型。

Contrast normalization contributes to a biologically-plausible model of receptive-field development in primary visual cortex (V1).

作者信息

Willmore Ben D B, Bulstrode Harry, Tolhurst David J

机构信息

Department of Physiology, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.

出版信息

Vision Res. 2012 Feb 1;54(5-2):49-60. doi: 10.1016/j.visres.2011.12.008. Epub 2012 Jan 3.

Abstract

Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli - such as sinusoidal gratings - respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 - each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input.

摘要

哺乳动物初级视觉皮层(V1)中的神经元群体表现出对比度归一化。对简单视觉刺激(如正弦光栅)有强烈反应的神经元,当它们作为更复杂刺激的一部分呈现时,对相同刺激的反应会变差,而这种更复杂的刺激同时也会激发其他相邻神经元。这种现象通常归因于附近V1神经元之间抑制性连接的普遍模式。比恩斯托克、库珀和芒罗(BCM)规则是一种神经网络学习规则,当在自然图像上进行训练时,会产生模型神经元,这些模型神经元个体上具有许多与真实V1神经元相同的调谐特性。然而,从群体角度来看,BCM网络与V1非常不同——BCM群体中的每个成员往往对视觉输入的相同主导特征做出反应,从而产生一种不完整、高度冗余的视觉信息编码。在这里,我们证明,通过将对比度归一化添加到BCM规则中,我们得到了一种神经合理的赫布学习规则,该规则可以学习一种高效的稀疏、过完备表示,这是V1中刺激选择性的更好模型。这表明V1中对比度归一化的一个作用是引导感受野的新生儿发育,使神经元对视觉输入的不同特征做出反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/848f/3334822/453f8b7843cf/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验